Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Cockett is active.

Publication


Featured researches published by Mark Cockett.


PLOS Pathogens | 2010

A Novel Small Molecule Inhibitor of Hepatitis C Virus Entry

Carl J. Baldick; Michael J. Wichroski; Annapurna Pendri; Ann W. Walsh; Jie Fang; Charles E. Mazzucco; Kevin A. Pokornowski; Ronald E. Rose; Betsy J. Eggers; Mayla Hsu; Weixu Zhai; Guangzhi Zhai; Samuel W. Gerritz; Michael A. Poss; Nicholas A. Meanwell; Mark Cockett; Daniel J. Tenney

Small molecule inhibitors of hepatitis C virus (HCV) are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp) incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc), blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development.


Current Opinion in Biotechnology | 2000

Applied genomics: integration of the technology within pharmaceutical research and development.

Mark Cockett; Nicholas C. Dracopoli; Elliott Sigal

Multiple novel technologies have recently been developed to improve the analysis of genetic sequences, to rapidly assess RNA or protein levels in relevant tissues, and to validate function of potential new drug targets. The challenge facing pharmaceutical research is one of effective integration of these new technologies in ways that can maximally affect the discovery and development pipeline. Although database mining and transcriptional profiling clearly have increased the number of putative targets, the current focus is to assign function to new gene targets in a high-throughput manner. This requires a restructuring of the classical linear progression from gene identification, functional elucidation, target validation and screen development. New approaches are called for that can make this process non-linear and high-throughput.


PLOS Genetics | 2006

Chemical Genetics Reveals an RGS/G-Protein Role in the Action of a Compound

Kevin Fitzgerald; Svetlana Tertyshnikova; Lisa Moore; Lynn Margaret Bjerke; Ben Burley; Jian Cao; Pamela M. Carroll; Robert Choy; Steve Doberstein; Yves Dubaquie; Yvonne Franke; Jenny Kopczynski; Hendrik C. Korswagen; Stanley R. Krystek; Nicholas J. Lodge; Ronald H.A. Plasterk; John E. Starrett; Terry R. Stouch; George Thalody; Honey Wayne; Alexander M. van der Linden; Yongmei Zhang; Stephen G. Walker; Mark Cockett; Judi Wardwell-Swanson; Petra Ross-Macdonald; Rachel M. Kindt

We report here on a chemical genetic screen designed to address the mechanism of action of a small molecule. Small molecules that were active in models of urinary incontinence were tested on the nematode Caenorhabditis elegans, and the resulting phenotypes were used as readouts in a genetic screen to identify possible molecular targets. The mutations giving resistance to compound were found to affect members of the RGS protein/G-protein complex. Studies in mammalian systems confirmed that the small molecules inhibit muscarinic G-protein coupled receptor (GPCR) signaling involving G-αq (G-protein alpha subunit). Our studies suggest that the small molecules act at the level of the RGS/G-αq signaling complex, and define new mutations in both RGS and G-αq, including a unique hypo-adapation allele of G-αq. These findings suggest that therapeutics targeted to downstream components of GPCR signaling may be effective for treatment of diseases involving inappropriate receptor activation.


Antimicrobial Agents and Chemotherapy | 2016

Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage

Beata Nowicka-Sans; Tricia Protack; Zeyu Lin; Zhufang Li; Sharon Zhang; Yongnian Sun; Himadri Samanta; Brian Terry; Zheng Liu; Yan Chen; Ny Sin; Sing-Yuen Sit; Jacob Swidorski; Jie Chen; Brian Lee Venables; Matthew D. Healy; Nicholas A. Meanwell; Mark Cockett; Umesh Hanumegowda; Alicia Regueiro-Ren; Mark Krystal; Ira B. Dicker

ABSTRACT BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.


Nature | 2015

Resensitizing daclatasvir-resistant hepatitis C variants by allosteric modulation of NS5A

Jin-Hua Sun; Donald R. O’Boyle; Robert A. Fridell; David R. Langley; Chunfu Wang; Susan B. Roberts; Peter T. Nower; Benjamin M. Johnson; Frederic Moulin; Michelle Nophsker; Ying-Kai Wang; Mengping Liu; Karen Rigat; Yong Tu; Piyasena Hewawasam; John F. Kadow; Nicholas A. Meanwell; Mark Cockett; Julie A. Lemm; Melissa Kramer; Makonen Belema; Min Gao

It is estimated that more than 170 million people are infected with hepatitis C virus (HCV) worldwide. Clinical trials have demonstrated that, for the first time in human history, the potential exists to eradicate a chronic viral disease using combination therapies that contain only direct-acting antiviral agents. HCV non-structural protein 5A (NS5A) is a multifunctional protein required for several stages of the virus replication cycle. NS5A replication complex inhibitors, exemplified by daclatasvir (DCV; also known as BMS-790052 and Daklinza), belong to the most potent class of direct-acting anti-HCV agents described so far, with in vitro activity in the picomolar (pM) to low nanomolar (nM) range. The potency observed in vitro has translated into clinical efficacy, with HCV RNA declining by ~3–4 log10 in infected patients after administration of single oral doses of DCV. Understanding the exceptional potency of DCV was a key objective of this study. Here we show that although DCV and an NS5A inhibitor analogue (Syn-395) are inactive against certain NS5A resistance variants, combinations of the pair enhance DCV potency by >1,000-fold, restoring activity to the pM range. This synergistic effect was validated in vivo using an HCV-infected chimaeric mouse model. The cooperative interaction of a pair of compounds suggests that NS5A protein molecules communicate with each other: one inhibitor binds to resistant NS5A, causing a conformational change that is transmitted to adjacent NS5As, resensitizing resistant NS5A so that the second inhibitor can act to restore inhibition. This unprecedented synergistic anti-HCV activity also enhances the resistance barrier of DCV, providing additional options for HCV combination therapy and new insight into the role of NS5A in the HCV replication cycle.


PLOS Computational Biology | 2009

Transcriptional Profiling of the Dose Response: A More Powerful Approach for Characterizing Drug Activities

Rui-Ru Ji; Heshani de Silva; Yisheng Jin; Robert E. Bruccoleri; Jian Cao; Aiqing He; Wenjun Huang; Paul S. Kayne; Isaac M. Neuhaus; Karl-Heinz Ott; Becky Penhallow; Mark Cockett; Michael G. Neubauer; Nathan O. Siemers; Petra Ross-Macdonald

The dose response curve is the gold standard for measuring the effect of a drug treatment, but is rarely used in genomic scale transcriptional profiling due to perceived obstacles of cost and analysis. One barrier to examining transcriptional dose responses is that existing methods for microarray data analysis can identify patterns, but provide no quantitative pharmacological information. We developed analytical methods that identify transcripts responsive to dose, calculate classical pharmacological parameters such as the EC50, and enable an in-depth analysis of coordinated dose-dependent treatment effects. The approach was applied to a transcriptional profiling study that evaluated four kinase inhibitors (imatinib, nilotinib, dasatinib and PD0325901) across a six-logarithm dose range, using 12 arrays per compound. The transcript responses proved a powerful means to characterize and compare the compounds: the distribution of EC50 values for the transcriptome was linked to specific targets, dose-dependent effects on cellular processes were identified using automated pathway analysis, and a connection was seen between EC50s in standard cellular assays and transcriptional EC50s. Our approach greatly enriches the information that can be obtained from standard transcriptional profiling technology. Moreover, these methods are automated, robust to non-optimized assays, and could be applied to other sources of quantitative data.


ACS Medicinal Chemistry Letters | 2016

Discovery of BMS-955176, a Second Generation HIV-1 Maturation Inhibitor with Broad Spectrum Antiviral Activity

Alicia Regueiro-Ren; Zheng Liu; Yan Chen; Ny Sin; Sing-Yuen Sit; Jacob Swidorski; Jie Chen; Brian Lee Venables; Juliang Zhu; Beata Nowicka-Sans; Tricia Protack; Zeyu Lin; Brian Terry; Himadri Samanta; Sharon Zhang; Zhufang Li; Brett R. Beno; Xiaohua S. Huang; Sandhya Rahematpura; Dawn D. Parker; Roy Haskell; Susan R. Jenkins; Kenneth S. Santone; Mark Cockett; Mark Krystal; Nicholas A. Meanwell; Umesh Hanumegowda; Ira B. Dicker

HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.


PLOS ONE | 2012

High-Throughput Screening and Rapid Inhibitor Triage Using an Infectious Chimeric Hepatitis C Virus

Michael J. Wichroski; Jie Fang; Betsy J. Eggers; Ronald E. Rose; Charles E. Mazzucco; Kevin A. Pokornowski; Carl J. Baldick; Monique Anthony; Craig J. Dowling; Lauren E. Barber; John E. Leet; Brett R. Beno; Samuel W. Gerritz; Michele Agler; Mark Cockett; Daniel J. Tenney

The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.


PLOS Pathogens | 2016

Mechanistic Studies and Modeling Reveal the Origin of Differential Inhibition of Gag Polymorphic Viruses by HIV-1 Maturation Inhibitors

Zeyu Lin; Joseph L. Cantone; Hao Lu; Beata Nowicka-Sans; Tricia Protack; Tian Yuan; Hong Yang; Zheng Liu; Dieter M. Drexler; Alicia Regueiro-Ren; Nicholas A. Meanwell; Mark Cockett; Mark Krystal; Max Lataillade; Ira B. Dicker

HIV-1 maturation inhibitors (MIs) disrupt the final step in the HIV-1 protease-mediated cleavage of the Gag polyprotein between capsid p24 capsid (CA) and spacer peptide 1 (SP1), leading to the production of infectious virus. BMS-955176 is a second generation MI with improved antiviral activity toward polymorphic Gag variants compared to a first generation MI bevirimat (BVM). The underlying mechanistic reasons for the differences in polymorphic coverage were studied using antiviral assays, an LC/MS assay that quantitatively characterizes CA/SP1 cleavage kinetics of virus like particles (VLPs) and a radiolabel binding assay to determine VLP/MI affinities and dissociation kinetics. Antiviral assay data indicates that BVM does not achieve 100% inhibition of certain polymorphs, even at saturating concentrations. This results in the breakthrough of infectious virus (partial antagonism) regardless of BVM concentration. Reduced maximal percent inhibition (MPI) values for BVM correlated with elevated EC50 values, while rates of HIV-1 protease cleavage at CA/SP1 correlated inversely with the ability of BVM to inhibit HIV-1 Gag polymorphic viruses: genotypes with more rapid CA/SP1 cleavage kinetics were less sensitive to BVM. In vitro inhibition of wild type VLP CA/SP1 cleavage by BVM was not maintained at longer cleavage times. BMS-955176 exhibited greatly improved MPI against polymorphic Gag viruses, binds to Gag polymorphs with higher affinity/longer dissociation half-lives and exhibits greater time-independent inhibition of CA/SP1 cleavage compared to BVM. Virological (MPI) and biochemical (CA/SP1 cleavage rates, MI-specific Gag affinities) data were used to create an integrated semi-quantitative model that quantifies CA/SP1 cleavage rates as a function of both MI and Gag polymorph. The model outputs are in accord with in vitro antiviral observations and correlate with observed in vivo MI efficacies. Overall, these findings may be useful to further understand antiviral profiles and clinical responses of MIs at a basic level, potentially facilitating further improvements to MI potency and coverage.


Antimicrobial Agents and Chemotherapy | 2016

Synergistic Activity of Combined NS5A Inhibitors

Donald R. O'Boyle; Peter T. Nower; Min Gao; Robert A. Fridell; Chunfu Wang; Piyasena Hewawasam; Omar D. Lopez; Yong Tu; Nicholas A. Meanwell; Makonen Belema; Susan B. Roberts; Mark Cockett; Jin-Hua Sun

ABSTRACT Daclatasvir (DCV) is a first-in-class hepatitis C virus (HCV) nonstructural 5A replication complex inhibitor (NS5A RCI) that is clinically effective in interferon-free combinations with direct-acting antivirals (DAAs) targeting alternate HCV proteins. Recently, we reported NS5A RCI combinations that enhance HCV inhibitory potential in vitro, defining a new class of HCV inhibitors termed NS5A synergists (J. Sun, D. R. O’Boyle II, R. A. Fridell, D. R. Langley, C. Wang, S. Roberts, P. Nower, B. M. Johnson F. Moulin, M. J. Nophsker, Y. Wang, M. Liu, K. Rigat, Y. Tu, P. Hewawasam, J. Kadow, N. A. Meanwell, M. Cockett, J. A. Lemm, M. Kramer, M. Belema, and M. Gao, Nature 527:245–248, 2015, doi:10.1038/nature15711). To extend the characterization of NS5A synergists, we tested new combinations of DCV and NS5A synergists against genotype (gt) 1 to 6 replicons and gt 1a, 2a, and 3a viruses. The kinetics of inhibition in HCV-infected cells treated with DCV, an NS5A synergist (NS5A-Syn), or a combination of DCV and NS5A-Syn were distinctive. Similar to activity observed clinically, DCV caused a multilog drop in HCV, followed by rebound due to the emergence of resistance. DCV–NS5A-Syn combinations were highly efficient at clearing cells of viruses, in line with the trend seen in replicon studies. The retreatment of resistant viruses that emerged using DCV monotherapy with DCV–NS5A-Syn resulted in a multilog drop and rebound in HCV similar to the initial decline and rebound observed with DCV alone on wild-type (WT) virus. A triple combination of DCV, NS5A-Syn, and a DAA targeting the NS3 or NS5B protein cleared the cells of viruses that are highly resistant to DCV. Our data support the observation that the cooperative interaction of DCV and NS5A-Syn potentiates both the genotype coverage and resistance barrier of DCV, offering an additional DAA option for combination therapy and tools for explorations of NS5A function.

Collaboration


Dive into the Mark Cockett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Krystal

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge