Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. Bass is active.

Publication


Featured researches published by Mark D. Bass.


Nature Reviews Molecular Cell Biology | 2007

Synergistic control of cell adhesion by integrins and syndecans.

Mark R. Morgan; Martin J. Humphries; Mark D. Bass

The ability of cells to adhere to each other and to their surrounding extracellular matrices is essential for a multicellular existence. Adhesion provides physical support for cells, regulates cell positioning and enables microenvironmental sensing. The integrins and the syndecans are two adhesion receptor families that mediate adhesion, but their relative and functional contributions to cell–extracellular matrix interactions remain obscure. Recent advances have highlighted connections between the signalling networks that are controlled by these families of receptors. Here we survey the evidence that synergistic signalling is involved in controlling adhesive function and the regulation of cell behaviour in response to the external environment.


Science Signaling | 2009

Proteomic Analysis of Integrin-Associated Complexes Identifies RCC2 as a Dual Regulator of Rac1 and Arf6

Jonathan D. Humphries; Adam Byron; Mark D. Bass; Sue E. Craig; John W. Pinney; David Knight; Martin J. Humphries

Regulator of chromosome condensation–2 is a component of fibronectin-activated signaling pathways that regulate cell migration. Integrin Interactors Integrins mediate cell-cell adhesion, as well as cell adhesion to the extracellular matrix. Identification of the intracellular signaling networks associated with integrins is of interest because integrins are involved in processes such as invasion of tumor cells during metastasis and leukocyte infiltration during inflammation. Humphries et al. developed a method of isolating protein complexes associated with α5β1 integrin, which binds to fibronectin, and with α4β1 integrin, which binds to vascular cell adhesion molecule–1. Although a subset of proteins was detected in both the α5β1 and α4β1 networks, there were several receptor-specific proteins. In particular, regulator of chromosome condensation–2 (RCC2) was identified as a component of the α5β1 integrin–associated signaling network. RCC2 promoted fibronectin-dependent migration by inhibiting two different subnetworks (Rac1 and Arf6). These techniques provide the means to investigate the composition and function of adhesion complexes under different physiological conditions. The binding of integrin adhesion receptors to their extracellular matrix ligands controls cell morphology, movement, survival, and differentiation in various developmental, homeostatic, and disease processes. Here, we report a methodology to isolate complexes associated with integrin adhesion receptors, which, like other receptor-associated signaling complexes, have been refractory to proteomic analysis. Quantitative, comparative analyses of the proteomes of two receptor-ligand pairs, α4β1–vascular cell adhesion molecule–1 and α5β1–fibronectin, defined both core and receptor-specific components. Regulator of chromosome condensation–2 (RCC2) was detected in the α5β1–fibronectin signaling network at an intersection between the Rac1 and adenosine 5′-diphosphate ribosylation factor 6 (Arf6) subnetworks. RCC2 knockdown enhanced fibronectin-induced activation of both Rac1 and Arf6 and accelerated cell spreading, suggesting that RCC2 limits the signaling required for membrane protrusion and delivery. Dysregulation of Rac1 and Arf6 function by RCC2 knockdown also abolished persistent migration along fibronectin fibers, indicating a functional role for RCC2 in directional cell movement. This proteomics workflow now opens the way to further dissection and systems-level analyses of adhesion signaling.


Journal of Cell Biology | 2007

Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix.

Mark D. Bass; Kirsty A. Roach; Mark R. Morgan; Zohreh Mostafavi-Pour; Tobias Schoen; Takashi Muramatsu; Ulrike Mayer; Christoph Ballestrem; Joachim P. Spatz; Martin J. Humphries

Cell migration in wound healing and disease is critically dependent on integration with the extracellular matrix, but the receptors that couple matrix topography to migratory behavior remain obscure. Using nano-engineered fibronectin surfaces and cell-derived matrices, we identify syndecan-4 as a key signaling receptor determining directional migration. In wild-type fibroblasts, syndecan-4 mediates the matrix-induced protein kinase Cα (PKCα)–dependent activation of Rac1 and localizes Rac1 activity and membrane protrusion to the leading edge of the cell, resulting in persistent migration. In contrast, syndecan-4–null fibroblasts migrate randomly as a result of high delocalized Rac1 activity, whereas cells expressing a syndecan-4 cytodomain mutant deficient in PKCα regulation fail to localize active Rac1 to points of matrix engagement and consequently fail to recognize and respond to topographical changes in the matrix.


Biochemical Journal | 2002

Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling.

Mark D. Bass; Martin J. Humphries

Syndecan-4 is a ubiquitous transmembrane proteoglycan that localizes to the focal adhesions of adherent cells and binds to a range of extracellular ligands, including growth factors and extracellular-matrix proteins. Engagement of syndecan-4 is essential for adhesion formation in cells adhering via certain integrins, and for cell proliferation and migration in response to growth factors. The cytoplasmic domain of syndecan-4 interacts with a number of signalling and structural proteins, and both extracellular and cytoplasmic domains are necessary for regulated activation of associated transmembrane receptors. PDZ domain-containing scaffold proteins (syntenin and CASK) bind to the C-terminus of the syndecan-4 cytoplasmic domain and co-ordinate clustering of receptors and connection to the actin cytoskeleton. Syndecan-4 also binds and activates protein kinase Calpha in the presence of phosphatidylinositol 4,5-bisphosphate, and regulates signalling by Rho-family GTPases and focal adhesion kinase. This review discusses the cytoplasmic interactions of syndecan-4 and how they affect cell behaviour as a consequence of the interaction with extracellular ligands. These conclusions also offer an insight into the role of syndecan-4 in vivo, and are consistent with phenotypes generated as a consequence of abnormal syndecan-4 expression in pathologies and gene disruption studies.


Journal of Cell Biology | 2012

SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways

Florian Steinberg; Kate J. Heesom; Mark D. Bass; Peter J. Cullen

Retrieval of β integrins from the lysosomal degradation pathway mediated by sorting nexin-17 is important for integrin recycling and regulation of cell migration.


Journal of Cell Biology | 2008

p190RhoGAP is the convergence point of adhesion signals from alpha 5 beta 1 integrin and syndecan-4.

Mark D. Bass; Mark R. Morgan; Kirsty A. Roach; Jeffrey Settleman; Andrew B. Goryachev; Martin J. Humphries

The fibronectin receptors α5β1 integrin and syndecan-4 cocluster in focal adhesions and coordinate cell migration by making individual contributions to the suppression of RhoA activity during matrix engagement. p190Rho–guanosine triphosphatase–activating protein (GAP) is known to inhibit RhoA during the early stages of cell spreading in an Src-dependent manner. This paper dissects the mechanisms of p190RhoGAP regulation and distinguishes the contributions of α5β1 integrin and syndecan-4. Matrix-induced tyrosine phosphorylation of p190RhoGAP is stimulated solely by engagement of α5β1 integrin and is independent of syndecan-4. Parallel engagement of syndecan-4 causes redistribution of the tyrosine-phosphorylated pool of p190RhoGAP between membrane and cytosolic fractions by a mechanism that requires direct activation of protein kinase C α by syndecan-4. Activation of both pathways is necessary for the efficient regulation of RhoA and, as a consequence, focal adhesion formation. Accordingly, we identify p190RhoGAP as the convergence point for adhesive signals mediated by α5β1 integrin and syndecan-4. This molecular mechanism explains the cooperation between extracellular matrix receptors during cell adhesion.


Developmental Cell | 2011

A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis.

Mark D. Bass; Rosalind C. Williamson; Robert Nunan; Jonathan D. Humphries; Adam Byron; Mark R. Morgan; Paul Martin; Martin J. Humphries

Summary Cell migration during wound healing requires adhesion receptor turnover to enable the formation and disassembly of cell-extracellular matrix contacts. Although recent advances have improved our understanding of integrin trafficking pathways, it is not known how extracellular ligand engagement controls receptor dynamics. Using atomic force microscopy, we have measured cell avidity for fibronectin and defined a mechanism for the outside-in regulation of α5β1-integrin. Surprisingly, adhesive strength was attenuated by the syndecan-4-binding domain of fibronectin due to a rapid triggering of α5β1-integrin endocytosis. Association of syndecan-4 with PKCα was found to trigger RhoG activation and subsequent dynamin- and caveolin-dependent integrin uptake. Like disruption of syndecan-4 or caveolin, gene disruption of RhoG in mice was found to retard closure of dermal wounds due to a migration defect of the fibroblasts and keratinocytes of RhoG null mice. Thus, this syndecan-4-regulated integrin endocytic pathway appears to play a key role in tissue repair.


Developmental Cell | 2013

Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling

Mark R. Morgan; Hellyeh Hamidi; Mark D. Bass; Stacey Warwood; Christoph Ballestrem; Martin J. Humphries

Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration.


Iubmb Life | 2009

Giving off mixed signals—Distinct functions of α5β1 and αvβ3 integrins in regulating cell behaviour

Mark R. Morgan; Adam Byron; Martin J. Humphries; Mark D. Bass

The formation, maturation, and dissolution of focal adhesions are basic prerequisites of cell migration and rely on the recruitment, signalling, and endocytosis of integrins. In many instances, extracellular matrix molecules are recognised by a number of integrins, and it is the sequential involvement of different integrins that allows establishment of cell polarity and migration towards a matrix stimulus. In this review, we consider both the similarities and differences between two key fibronectin receptors, αvβ3 and α5β1 integrin. By considering the GTPase and kinase signalling and trafficking of two such closely‐related receptors, we begin to understand how cell migration is coordinated.


Science Signaling | 2009

Syndecans shed their reputation as inert molecules

Mark D. Bass; Mark R. Morgan; Martin J. Humphries

The shedding of the extracellular domain of a transmembrane proteoglycan can be controlled by its cytoplasmic domain. The syndecan transmembrane proteoglycans synergize with receptors for extracellular matrix molecules and growth factors to initiate cytoplasmic signals in response to a range of extracellular stimuli. Syndecans influence a wide range of physiological processes, but their contribution is most apparent during wound repair. Aspects of syndecan biology that have attracted research interest include extracellular matrix binding, outside-to-inside plasma membrane signal propagation, activation of cytoplasmic signals, and shedding of the syndecan extracellular domain, but the mechanisms by which syndecan cytoplasmic signals modulate extracellular function remain largely unresolved. Hayashida et al. have now discovered that association between an endocytic regulator, Rab5, and the syndecan-1 cytoplasmic domain controlled the shedding of the syndecan-1 extracellular domain. The work describes a mechanistic investigation into inside-to-outside syndecan signaling and highlights several gaps in our understanding of the relation between cell-surface receptors and proteases. In this Perspective, we summarize the current understanding of receptor interplay and identify the challenges that face investigators of adhesion- and growth factor–dependent signaling.

Collaboration


Dive into the Mark D. Bass's collaboration.

Top Co-Authors

Avatar

Martin J. Humphries

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar

Mark R. Morgan

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Byron

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Ballestrem

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Knight

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Jonathan D. Humphries

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge