Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. Fricker is active.

Publication


Featured researches published by Mark D. Fricker.


Science | 2010

Rules for Biologically Inspired Adaptive Network Design

Atsushi Tero; Seiji Takagi; Tetsu Saigusa; Kentaro Ito; Daniel P. Bebber; Mark D. Fricker; Kenji Yumiki; Ryo Kobayashi; Toshiyuki Nakagaki

Miniature Transport Engineers In its vegetative phase, the slime mold Physarum polycephalum “slimes” its way through the world seeking food. As it explores, it links previously found food sources with tubular structures. Tero et al. (p. 439) report that if food sources are deposited on a plate in a pattern corresponding in miniature to the positions of the cities that surround Tokyo, the resulting network of Physarum tubules that develops is rather similar in structure to the railroad network that connects the Japanese cities. A model was produced that describes the adaptive network development displayed by the slime mold. This biologically inspired model might provide insight into how to implement properties like resistance of transport systems to local failures into similar human-designed systems. Human municipal transportation engineers might learn design strategies from the lowly slime mold. Transport networks are ubiquitous in both social and biological systems. Robust network performance involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological networks have been honed by many cycles of evolutionary selection pressure and are likely to yield reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without centralized control and may represent a readily scalable solution for growing networks in general. We show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault tolerance, and cost to those of real-world infrastructure networks—in this case, the Tokyo rail system. The core mechanisms needed for adaptive network formation can be captured in a biologically inspired mathematical model that may be useful to guide network construction in other domains.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis

Laurent Marty; Wafi Siala; Markus Schwarzländer; Mark D. Fricker; Markus Wirtz; Lee J. Sweetlove; Yves Meyer; Andreas J. Meyer; Jean-Philippe Reichheld; Rüdiger Hell

Tight control of cellular redox homeostasis is essential for protection against oxidative damage and for maintenance of normal metabolism as well as redox signaling events. Under oxidative stress conditions, the tripeptide glutathione can switch from its reduced form (GSH) to oxidized glutathione disulfide (GSSG), and thus, forms an important cellular redox buffer. GSSG is normally reduced to GSH by 2 glutathione reductase (GR) isoforms encoded in the Arabidopsis genome, cytosolic GR1 and GR2 dual-targeted to chloroplasts and mitochondria. Measurements of total GR activity in leaf extracts of wild-type and 2 gr1 deletion mutants revealed that ≈65% of the total GR activity is attributed to GR1, whereas ≈35% is contributed by GR2. Despite the lack of a large share in total GR activity, gr1 mutants do not show any informative phenotype, even under stress conditions, and thus, the physiological impact of GR1 remains obscure. To elucidate its role in plants, glutathione-specific redox-sensitive GFP was used to dynamically measure the glutathione redox potential (EGSH) in the cytosol. Using this tool, it is shown that EGSH in gr1 mutants is significantly shifted toward more oxidizing conditions. Surprisingly, dynamic reduction of GSSG formed during induced oxidative stress in gr1 mutants is still possible, although significantly delayed compared with wild-type plants. We infer that there is functional redundancy in this critical pathway. Integrated biochemical and genetic assays identify the NADPH-dependent thioredoxin system as a backup system for GR1. Deletion of both, NADPH-dependent thioredoxin reductase A and GR1, prevents survival due to a pollen lethal phenotype.


Molecular Plant | 2009

The Metabolic Response of Arabidopsis Roots to Oxidative Stress is Distinct from that of Heterotrophic Cells in Culture and Highlights a Complex Relationship between the Levels of Transcripts, Metabolites, and Flux

Martin Lehmann; Markus Schwarzländer; Toshihiro Obata; Supaart Sirikantaramas; Meike Burow; Carl Erik Olsen; Takayuki Tohge; Mark D. Fricker; Birger Lindberg Møller; Alisdair R. Fernie; Lee J. Sweetlove; Miriam Laxa

Metabolic adjustments are a significant, but poorly understood, part of the response of plants to oxidative stress. In a previous study (Baxter et al., 2007), the metabolic response of Arabidopsis cells in culture to induction of oxidative stress by menadione was characterized. An emergency survival strategy was uncovered in which anabolic primary metabolism was largely down-regulated in favour of catabolic and antioxidant metabolism. The response in whole plant tissues may be different and we have therefore investigated the response of Arabidopsis roots to menadione treatment, analyzing the transcriptome, metabolome and key metabolic fluxes with focus on primary as well as secondary metabolism. Using a redox-sensitive GFP, it was also shown that menadione causes redox perturbation, not just in the mitochondrion, but also in the cytosol and plastids of roots. In the first 30 min of treatment, the response was similar to the cell culture: there was a decrease in metabolites of the TCA cycle and amino acid biosynthesis and the transcriptomic response was dominated by up-regulation of DNA regulatory proteins. After 2 and 6 h of treatment, the response of the roots was different to the cell culture. Metabolite levels did not remain depressed, but instead recovered and, in the case of pyruvate, some amino acids and aliphatic glucosinolates showed a steady increase above control levels. However, no major changes in fluxes of central carbon metabolism were observed and metabolic transcripts changed largely independently of the corresponding metabolites. Together, the results suggest that root tissues can recover metabolic activity after oxidative inhibition and highlight potentially important roles for glycolysis and the oxidative pentose phosphate pathway.


Plant Physiology | 2008

Decrease in Manganese Superoxide Dismutase Leads to Reduced Root Growth and Affects Tricarboxylic Acid Cycle Flux and Mitochondrial Redox Homeostasis

Megan Morgan; Martin Lehmann; Markus Schwarzländer; Charles Baxter; Agata Sienkiewicz-Porzucek; Thomas C.R. Williams; Nicolas Schauer; Alisdair R. Fernie; Mark D. Fricker; R. George Ratcliffe; Lee J. Sweetlove; Iris Finkemeier

Superoxide dismutases (SODs) are key components of the plant antioxidant defense system. While plastidic and cytosolic isoforms have been extensively studied, the importance of mitochondrial SOD at a cellular and whole-plant level has not been established. To address this, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated in which expression of AtMSD1, encoding the mitochondrial manganese (Mn)SOD, was suppressed by antisense. The strongest antisense line showed retarded root growth even under control growth conditions. There was evidence for a specific disturbance of mitochondrial redox homeostasis in seedlings grown in liquid culture: a mitochondrially targeted redox-sensitive green fluorescent protein was significantly more oxidized in the MnSOD-antisense background. In contrast, there was no substantial change in oxidation of cytosolically targeted redox-sensitive green fluorescent protein, nor changes in antioxidant defense components. The consequences of altered mitochondrial redox status of seedlings were subtle with no widespread increase of mitochondrial protein carbonyls or inhibition of mitochondrial respiratory complexes. However, there were specific inhibitions of tricarboxylic acid (TCA) cycle enzymes (aconitase and isocitrate dehydrogenase) and an inhibition of TCA cycle flux in isolated mitochondria. Nevertheless, total respiratory CO2 output of seedlings was not decreased, suggesting that the inhibited TCA cycle enzymes can be bypassed. In older, soil-grown plants, redox perturbation was more pronounced with changes in the amount and/or redox poise of ascorbate and glutathione. Overall, the results demonstrate that reduced MnSOD affects mitochondrial redox balance and plant growth. The data also highlight the flexibility of plant metabolism with TCA cycle inhibition having little effect on overall respiratory rates.


Nature Reviews Molecular Cell Biology | 2002

A greener world: The revolution in plant bioimaging

Federica Brandizzi; Mark D. Fricker; Chris Hawes

The exploitation of fluorescent proteins has heralded a new age in the in vivo analysis of subcellular events, and has overcome many of the limitations that are associated with the investigation of cellular and molecular processes in plant cells. Recently, there have been many exciting applications of green fluorescent protein and its spectral derivatives in the study of plant cells.


Biochimica et Biophysica Acta | 2009

Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge.

Markus Schwarzländer; Mark D. Fricker; Lee J. Sweetlove

In animals, the impact of ROS production by mitochondria on cell physiology, death, disease and ageing is well recognised. In photosynthetic organisms such as higher plants, however, the chloroplast and peroxisomes are the major sources of ROS during normal metabolism and the importance of mitochondria in oxidative stress and redox signalling is less well established. To address this, the in vivo oxidation state of a mitochondrially-targeted redox-sensitive GFP (mt-roGFP2) was investigated in Arabidopsis leaves. Classical ROS-generating inhibitors of mitochondrial electron transport (rotenone, antimycin A and SHAM) had no effect on mt-roGFP oxidation when used singly, but combined inhibition of complex III and alternative oxidase by antimycin A and SHAM did cause significant oxidation. Inhibitors of complex IV and aconitase also caused oxidation of mt-roGFP2. This oxidation was not apparent in the cytosol whereas antimycin A+SHAM also caused oxidation of cytosolic roGFP2. Menadione had a much greater effect than the inhibitors, causing nearly complete oxidation of roGFP2 in both mitochondria and cytosol. A range of severe abiotic stress treatments (heat, salt, and heavy metal stress) led to oxidation of mt-roGFP2 while hyperosmotic stress had no effect and low temperature caused a slight but significant decrease in oxidation. Similar changes were observed for cytosolic roGFP2. Finally, the recovery of oxidation state of roGFP in mitochondria after oxidation by H(2)O(2) treatment was dramatically slower than that of either the cytosol or chloroplast. Together, the results highlight the sensitivity of the mitochondrion to redox perturbation and suggest a potential role in sensing and signalling cellular redox challenge.


Biochemical Journal | 2011

The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’

Markus Schwarzländer; David C. Logan; Mark D. Fricker; Lee J. Sweetlove

The properties of a cpYFP [circularly permuted YFP (yellow fluorescent protein)] reported to act as a superoxide sensor have been re-examined in Arabidopsis mitochondria. We have found that the probe has high pH sensitivity and that dynamics in the cpYFP signal disappeared when the matrix pH was clamped by nigericin. In contrast, genetic and pharmacological manipulation of matrix superoxide had no detectable effect on the cpYFP signal. These findings question the existence of superoxide flashes in mitochondria.


The Plant Cell | 2009

Sieve Element Ca2+ Channels as Relay Stations between Remote Stimuli and Sieve Tube Occlusion in Vicia faba

Alexandra C. U. Furch; Aart J. E. van Bel; Mark D. Fricker; Hubert H. Felle; Maike Fuchs; Jens B. Hafke

Damage induces remote occlusion of sieve tubes in Vicia faba by forisome dispersion, triggered during the passage of an electropotential wave (EPW). This study addresses the role of Ca2+ channels and cytosolic Ca2+ elevation as a link between EPWs and forisome dispersion. Ca2+ channel antagonists affect the initial phase of the EPW as well as the prolonged plateau phase. Resting levels of sieve tube Ca2+ of ∼50 nM were independently estimated using Ca2+-selective electrodes and a Ca2+-sensitive dye. Transient changes in cytosolic Ca2+ were observed in phloem tissue in response to remote stimuli and showed profiles similar to those of EPWs. The measured elevation of Ca2+ in sieve tubes was below the threshold necessary for forisome dispersion. Therefore, forisomes need to be associated with Ca2+ release sites. We found an association between forisomes and endoplasmic reticulum (ER) at sieve plates and pore-plasmodesma units where high-affinity binding of a fluorescent Ca2+ channel blocker mapped an increased density of Ca2+ channels. In conclusion, propagation of EPWs in response to remote stimuli is linked to forisome dispersion through transiently high levels of parietal Ca2+, release of which depends on both plasma membrane and ER Ca2+ channels.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

Biological solutions to transport network design

Daniel P. Bebber; Juliet Hynes; P. R. Darrah; Lynne Boddy; Mark D. Fricker

Transport networks are vital components of multicellular organisms, distributing nutrients and removing waste products. Animal and plant transport systems are branching trees whose architecture is linked to universal scaling laws in these organisms. In contrast, many fungi form reticulated mycelia via the branching and fusion of thread-like hyphae that continuously adapt to the environment. Fungal networks have evolved to explore and exploit a patchy environment, rather than ramify through a three-dimensional organism. However, there has been no explicit analysis of the network structures formed, their dynamic behaviour nor how either impact on their ecological function. Using the woodland saprotroph Phanerochaete velutina, we show that fungal networks can display both high transport capacity and robustness to damage. These properties are enhanced as the network grows, while the relative cost of building the network decreases. Thus, mycelia achieve the seemingly competing goals of efficient transport and robustness, with decreasing relative investment, by selective reinforcement and recycling of transport pathways. Fungal networks demonstrate that indeterminate, decentralized systems can yield highly adaptive networks. Understanding how these relatively simple organisms have found effective transport networks through a process of natural selection may inform the design of man-made networks.


Journal of Microscopy | 1996

Aberration control in quantitative imaging of botanical specimens by multidimensional fluorescence microscopy

N. S. White; Rachel Errington; Mark D. Fricker; Julian L. Wood

Three dimensional (3‐D) fluorescence microscopes, including conventional instruments with digital deblurring, confocal systems and two‐photon excitation, all exhibit monochromatic and chromatic aberrations. A simple Gaussian model of the aberrated point spread function and optical field for each instrument illustrates spatial distortions and blurring and some unique attenuation effects in confocal and two‐photon microscopy. These properties depend on the manner in which illumination and detection combine to give the overall microscope performance and highlight the importance of both optics and sample aberrations; the specimen must be considered as an optical component of the integrated imaging system.

Collaboration


Dive into the Mark D. Fricker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge