Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. Leibowitz is active.

Publication


Featured researches published by Mark D. Leibowitz.


Journal of Biological Chemistry | 1999

NOVEL PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) GAMMA AND PPARDELTA LIGANDS PRODUCE DISTINCT BIOLOGICAL EFFECTS

Joel P. Berger; Mark D. Leibowitz; Thomas W. Doebber; Alex Elbrecht; Bei Zhang; Gaochou Zhou; Chhabi Biswas; Catherine A. Cullinan; Nancy S. Hayes; Ying Li; Michael Tanen; John Ventre; Margaret Wu; Gregory D. Berger; Ralph T. Mosley; Robert W. Marquis; Conrad Santini; Soumya P. Sahoo; Richard L. Tolman; Roy G. Smith; David E. Moller

The peroxisome proliferator-activated receptors (PPARs) include three receptor subtypes encoded by separate genes: PPARα, PPARδ, and PPARγ. PPARγ has been implicated as a mediator of adipocyte differentiation and the mechanism by which thiazolidinedione drugs exert in vivo insulin sensitization. Here we characterized novel, non-thiazolidinedione agonists for PPARγ and PPARδ that were identified by radioligand binding assays. In transient transactivation assays these ligands were agonists of the receptors to which they bind. Protease protection studies showed that ligand binding produced specific alterations in receptor conformation. Both PPARγ and PPARδ directly interacted with a nuclear receptor co-activator (CREB-binding protein) in an agonist-dependent manner. Only the PPARγ agonists were able to promote differentiation of 3T3-L1 preadipocytes. In diabeticdb/db mice all PPARγ agonists were orally active insulin-sensitizing agents producing reductions of elevated plasma glucose and triglyceride concentrations. In contrast, selectivein vivo activation of PPARδ did not significantly affect these parameters. In vivo PPARα activation with WY-14653 resulted in reductions in elevated triglyceride levels with minimal effect on hyperglycemia. We conclude that: 1) synthetic non-thiazolidinediones can serve as ligands of PPARγ and PPARδ; 2) ligand-dependent activation of PPARδ involves an apparent conformational change and association of the receptor ligand binding domain with CREB-binding protein; 3) PPARγ activation (but not PPARδ or PPARα activation) is sufficient to potentiate preadipocyte differentiation; 4) non-thiazolidinedione PPARγ agonists improve hyperglycemia and hypertriglyceridemia in vivo; 5) although PPARα activation is sufficient to affect triglyceride metabolism, PPARδ activation does not appear to modulate glucose or triglyceride levels.


Nature Reviews Drug Discovery | 2007

RAR and RXR modulation in cancer and metabolic disease

Lucia Altucci; Mark D. Leibowitz; Kathleen M. Ogilvie; Angel R. de Lera; Hinrich Gronemeyer

Retinoic acid receptors (RARs) are ligand-controlled transcription factors that function as heterodimers with retinoid X receptors (RXRs) to regulate cell growth and survival. The success of RAR modulation in the treatment of acute promyelocytic leukaemia (APL) has stimulated considerable interest in the development of RAR and RXR modulators. This has been aided by recent advances in the understanding of the biological role of RARs and RXRs and in the design of selective receptor modulators that might overcome the limitations of current drugs. Here, we discuss the challenges and opportunities for therapeutic strategies based on RXR and RAR modulators, with a focus on cancer and metabolic diseases such as diabetes and obesity.


FEBS Letters | 2000

Activation of PPARδ alters lipid metabolism in db/db mice

Mark D. Leibowitz; Catherine Fievet; Nathalie Hennuyer; Julia Peinado-Onsurbe; Hélène Duez; Joel P. Berger; Catherine A. Cullinan; Carl P. Sparrow; Joanne Baffic; Gregory D. Berger; Conrad Santini; Robert W. Marquis; Richard L. Tolman; Roy G. Smith; David E. Moller; Johan Auwerx

Peroxisome proliferator‐activated receptors (PPARs) are nuclear receptors, which heterodimerize with the retinoid X receptor and bind to peroxisome proliferator response elements in the promoters of regulated genes. Despite the wealth of information available on the function of PPARα and PPARγ, relatively little is known about the most widely expressed PPAR subtype, PPARδ. Here we show that treatment of insulin resistant db/db mice with the PPARδ agonist L‐165 041, at doses that had no effect on either glucose or triglycerides, raised total plasma cholesterol concentrations. The increased cholesterol was primarily associated with high density lipoprotein (HDL) particles, as shown by fast protein liquid chromatography analysis. These data were corroborated by the chemical analysis of the lipoproteins isolated by ultracentrifugation, demonstrating that treatment with L‐165 041 produced an increase in circulating HDL without major changes in very low or low density lipoproteins. White adipose tissue lipoprotein lipase activity was reduced following treatment with the PPARδ ligand, but was increased by a PPARγ agonist. These data suggest both that PPARδ is involved in the regulation of cholesterol metabolism in db/db mice and that PPARδ ligands could potentially have therapeutic value.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor

Thierry Claudel; Mark D. Leibowitz; Catherine Fievet; Anne Tailleux; Brandee L. Wagner; Joyce J. Repa; Gérard Torpier; Jean Marc A Lobaccaro; James R. Paterniti; David J. Mangelsdorf; Richard A. Heyman; Johan Auwerx

A common feature of many metabolic pathways is their control by retinoid X receptor (RXR) heterodimers. Dysregulation of such metabolic pathways can lead to the development of atherosclerosis, a disease influenced by both systemic and local factors. Here we analyzed the effects of activation of RXR and some of its heterodimers in apolipoprotein E −/− mice, a well established animal model of atherosclerosis. An RXR agonist drastically reduced the development of atherosclerosis. In addition, a ligand for the peroxisome proliferator-activated receptor (PPAR)γ and a dual agonist of both PPARα and PPARγ had moderate inhibitory effects. Both RXR and liver X receptor (LXR) agonists induced ATP-binding cassette protein 1 (ABC-1) expression and stimulated ABC-1-mediated cholesterol efflux from macrophages from wild-type, but not from LXRα and β double −/−, mice. Hence, activation of ABC-1-mediated cholesterol efflux by the RXR/LXR heterodimer might contribute to the beneficial effects of rexinoids on atherosclerosis and warrant further evaluation of RXR/LXR agonists in prevention and treatment of atherosclerosis.


Endocrinology | 2008

LGD-5552, an Antiinflammatory Glucocorticoid Receptor Ligand with Reduced Side Effects, in Vivo

Francisco J. López; Robert Ardecky; Bruce F. Bebo; Khalid Benbatoul; Louise Y. de Grandpre; Sha Liu; Mark D. Leibowitz; Keith B. Marschke; Jon Rosen; Deepa Rungta; Humberto Viveros; Wan-Ching Yen; Lin Zhi; Andres Negro-Vilar; Jeffrey N. Miner

Treatment of inflammation is often accomplished through the use of glucocorticoids. However, their use is limited by side effects. We have examined the activity of a novel glucocorticoid receptor ligand that binds the receptor efficiently and strongly represses inflammatory gene expression. This compound has potent antiinflammatory activity in vivo and represses the transcription of the inflammatory cytokine monocyte chemoattractant protein-1 and induces the antiinflammatory cytokine IL-10. The compound demonstrates differential gene regulation, compared with commonly prescribed glucocorticoids, effectively inducing some genes and repressing others in a manner different from the glucocorticoid prednisolone. The separation between the antiinflammatory effects of LGD-5552 and the side effects commonly associated with glucocorticoid treatment suggest that this molecule differs significantly from prednisolone and other steroids and may provide a safer therapeutic window for inflammatory conditions now commonly treated with steroidal glucocorticoids.


Molecular and Cellular Endocrinology | 2000

A PPARγ mutant serves as a dominant negative inhibitor of PPAR signaling and is localized in the nucleus

Joel P. Berger; Hansa V. Patel; John Woods; Nancy S. Hayes; Stephen A. Parent; Joseph Clemas; Mark D. Leibowitz; Alex Elbrecht; Richard A. Rachubinski; John P. Capone; David E. Moller

The peroxisomal proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that act as ligand-activated transcription factors. PPARgamma plays a critical role in regulating adipocyte differentiation and lipid metabolism. Recently, thiazolidinedione (TZD) and select non-TZD antidiabetic agents have been identified as PPARgamma agonists. To further characterize this receptor subclass, a mutant hPPARgamma lacking five carboxyl-terminal amino acids was produced (hPPARgamma2Delta500). In COS-1 cells transfected with PPAR-responsive reporter constructs, the mutant receptor could not be activated by a potent PPARgamma agonist. When cotransfected with hPPARgamma2 or hPPARalpha, hPPARgamma2Delta500 abrogated wild-type receptor activity in a dose-responsive manner. hPPARgamma2Delta500 was also impaired with respect to binding of a high-affinity radioligand. In addition, its conformation was unaffected by normally saturating concentrations of PPARgamma agonist as determined by protease protection experiments. Electrophoretic mobility shift assays demonstrated that hPPARgamma2Delta500 and hPPARgamma2 both formed heterodimeric complexes with human retinoidxreceptor alpha (hRXRalpha) and could bind a peroxisome proliferator-responsive element (PPRE) with similar affinity. Therefore, hPPARgamma2Delta500 appears to repress PPAR activity by competing with wild type receptor to dimerize with RXR and bind the PPRE. In addition, the mutant receptor may titrate out factors required for PPAR-regulated transcriptional activation. Both hPPARgamma2 and hPPARgamma2Delta500 localized to the nucleus of transiently transfected COS-1 cells as determined by immunofluorescence using a PPARgamma-specific antibody. Thus, nuclear localization of PPARgamma occurs independently of its activation state. The dominant negative mutant, hPPARgamma2Delta500, may prove useful in further studies to characterize PPAR functions both in vitro and in vivo


Diabetes | 1995

A Novel Insulin Secretagogue Is a Phosphodiesterase Inhibitor

Mark D. Leibowitz; Chhabi Biswas; Edward J. Brady; Macro Conti; Catherine A. Cullinan; Nancy S. Hayes; Vincent C. Manganiello; Richard Saperstein; Lu-hua Wang; Peter Zafian; Joel P. Berger

The arylpiperazine L-686,398 was described as an oral hypoglycemic agent and is shown to be an insulin secretagogue in vitro. The characteristics of its activity were similar to those of the incretin glucagon-like peptide I (GLP-I). We demonstrate that both the peptide and L-686,398 increase the accumulation of cAMP in isolated ob/ob mouse pancreatic islet cells, but by different mechanisms. Although GLP-I activates adenylate cyclase, the arylpiperazine has no effect on this enzyme or on the binding of 125I-labeled GLP-I to its receptor on RINm5F rat insulinoma cell membranes. However, L-686,398 inhibits the total cAMP phosphodiesterase (PDE) activity in homogenates of ob/ob mouse pancreatic islets with an EC50 of ∼ 50 μmol/l. To determine the mechanism of PDE inhibition by the arylpiperazine and to examine its specificity, we studied the kinetics of arylpiperazine inhibition of two recombinant PDEs. The arylpiperazine is a competitive inhibitor of both a human heart type III PDE and a rat type IV-D PDE. Inhibition of the type III and IV isozymes are characterized by Ki values of 27 and 5 μmol/l, respectively. Although not extremely potent, the arylpiperazine does exhibit modest selectivity between these PDEs. The observation that L-686,398 acts as a PDE inhibitor suggests that exploration for β-cell-specific PDE isoforms may reveal novel PDEs as targets for the development of therapeutically useful glucose-dependent insulin secretagogues.


Cell Calcium | 1994

Glucose-dependent alterations of intracellular free calcium by glucagon-like peptide-1(7-36amide) in individual obob mouse β-cells

Catherine A. Cullinan; Edward J. Brady; Richard Saperstein; Mark D. Leibowitz

Depolarizing concentrations of glucose produce characteristic alterations of intracellular free Ca2+ ([Ca2+]i) in pancreatic beta-cells. The effects of the proposed incretin, glucagon-like peptide-1(7-36amide) (GLP-1a) on [Ca2+]i were determined from Fura-2 fluorescence ratio imaging of cultured ob/ob mouse pancreatic beta-cells. In control cells, [Ca2+]i is low in 3 mM glucose; increasing [glucose] to 8-12 mM results in an initial dip in [Ca2+]i followed by slow oscillating increases in [Ca2+]i. GLP-1a (0.03-10,000 pM) does not alter [Ca2+]i in 3 mM glucose, but does change the response to elevated glucose (8-12 mM). The time integral of the initial dip is reduced ([GLP-1a] 10-100 pM), and the integral of the [Ca2+]i signal is increased ([GLP-1a] > or = 1 pM). GLP-1a increases the frequency of sustained, stable plateau responses to elevated glucose, and the frequency of large, rapid spikes of increased [Ca2+]i associated with either plateaus, or oscillations. Application of a cAMP analog mimics most of the actions of GLP-1a. Activation of the GLP-1a receptor, or application of cAMP alters pancreatic beta-cell [Ca2+]i only when [glucose] is high.


Bioorganic & Medicinal Chemistry Letters | 2003

Design and synthesis of fluorinated RXR modulators.

D.L. Gernert; R. Ajamie; R.A. Ardecky; Michael Gregory Bell; Mark D. Leibowitz; Dale A. Mais; Christopher M. Mapes; P.Y. Michellys; Deepa Rungta; Anne Reifel-Miller; John S. Tyhonas; Nathan Yumibe; Timothy Alan Grese

Fluorinated trienoic acid analogues of the RXR selective modulator 1 (LG101506) were synthesized, and tested for their ability to bind RXRalpha and activate RXR homo and heterodimers. Potency and efficacy were observed to be dependent upon the position of fluorination, and improvement in pharmacological profile was demonstrated in some cases.


Journal of Experimental Medicine | 2001

Attenuation of Colon Inflammation through Activators of the Retinoid X Receptor (Rxr)/Peroxisome Proliferator–Activated Receptor γ (Pparγ) Heterodimer: A Basis for New Therapeutic Strategies

Pierre Desreumaux; Laurent Dubuquoy; Sophie Nutten; Michel Peuchmaur; Walter Englaro; Kristina Schoonjans; Benoit Derijard; Béatrice Desvergne; Walter Wahli; Pierre Chambon; Mark D. Leibowitz; Jean-Frederic Colombel; Johan Auwerx

Collaboration


Dive into the Mark D. Leibowitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Auwerx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge