Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. Wittman is active.

Publication


Featured researches published by Mark D. Wittman.


Cancer Research | 2006

In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417.

Paul Haluska; Joan M. Carboni; David A. Loegering; Francis Y. Lee; Mark D. Wittman; Mark G. Saulnier; David B. Frennesson; Kimberly R. Kalli; Cheryl A. Conover; Ricardo M. Attar; Scott H. Kaufmann; Marco M. Gottardis; Charles Erlichman

The insulin-like growth factor receptor (IGF-IR) and insulin receptor are either overactivated and/or overexpressed in a wide range of tumor types and contribute to tumorigenicity, proliferation, metastasis, and drug resistance. Here, we show that BMS-554417, a novel small molecule developed as an inhibitor of IGF-IR, inhibits IGF-IR and insulin receptor kinase activity and proliferation in vitro, and reduces tumor xenograft size in vivo. In a series of carcinoma cell lines, the IC50 for proliferation ranged from 120 nmol/L (Colo205) to >8.5 micromol/L (OV202). The addition of stimulatory ligands was unnecessary for the antiproliferative effect in MCF-7 and OV202 cells. BMS-554417 treatment inhibited IGF-IR and insulin receptor signaling through extracellular signal-related kinase as well as the phosphoinositide 3-kinase/Akt pathway, as evidenced by decreased Akt phosphorylation at Ser473. At doses that inhibited proliferation, the compound also caused a G0-G1 arrest and prevented nuclear accumulation of cyclin D1 in response to LR3 IGF-I. In Jurkat T-cell leukemia cells, this agent triggered apoptotic cell death via the mitochondrial pathway. BMS-554417 was orally bioavailable and significantly inhibited the growth of IGF1R-Sal tumor xenografts in vivo. BMS-554417 is a member of a novel class of IGF-IR/insulin receptor inhibitors that have potential clinical applications because of their antiproliferative and proapoptotic activity in vitro and in vivo.


Cancer Research | 2005

Tumor Development by Transgenic Expression of a Constitutively Active Insulin-Like Growth Factor I Receptor

Joan M. Carboni; Adrian V. Lee; Darryl L. Hadsell; Bruce R. Rowley; Francis Y. Lee; David K. Bol; Amy Camuso; Marco M. Gottardis; Ann Greer; Ching Ping Ho; Warren Hurlburt; Aixin Li; Mark G. Saulnier; Upender Velaparthi; Cindy Wang; Mei-Li Wen; Richard A. Westhouse; Mark D. Wittman; Kurt Zimmermann; Brent A. Rupnow; Tai W. Wong

The insulin-like growth factor I receptor (IGF-IR) is a transmembrane tyrosine kinase that is essential to growth and development and also thought to provide a survival signal for the maintenance of the transformed phenotype. There has been increasing interest in further understanding the role of IGF-I signaling in cancer and in developing receptor antagonists for therapeutic application. We describe herein a novel animal model that involves transgenic expression of a fusion receptor that is constitutively activated by homodimerization. Transgenic mice that expressed the activated receptor showed aberrant development of the mammary glands and developed salivary and mammary adenocarcinomas as early as 8 weeks of age. Xenograft tumors and a cell line were derived from the transgenic animals and are sensitive to inhibition by a novel small-molecule inhibitor of the IGF-IR kinase. This new model should provide new opportunities for further understanding how aberrant IGF-IR signaling leads to tumorigenesis and for optimizing novel antagonists of the receptor kinase.


Molecular Cancer Therapeutics | 2009

BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR

Joan M. Carboni; Mark D. Wittman; Zheng Yang; Francis Y. Lee; Ann Greer; Warren Hurlburt; Stephen Hillerman; Carolyn Cao; Glenn H. Cantor; Janet Dell-John; Cliff Chen; Lorell Discenza; Krista Menard; Aixin Li; George L. Trainor; Dolatrai M. Vyas; Robert Kramer; Ricardo M. Attar; Marco M. Gottardis

BMS-754807 is a potent and reversible inhibitor of the insulin-like growth factor 1 receptor/insulin receptor family kinases (Ki, <2 nmol/L). It is currently in phase I development for the treatment of a variety of human cancers. BMS-754807 effectively inhibits the growth of a broad range of human tumor types in vitro, including mesenchymal (Ewings, rhabdomyosarcoma, neuroblastoma, and liposarcoma), epithelial (breast, lung, pancreatic, colon, gastric), and hematopoietic (multiple myeloma and leukemia) tumor cell lines (IC50, 5–365 nmol/L); the compound caused apoptosis in a human rhabdomyosarcoma cell line, Rh41, as shown by an accumulation of the sub-G1 fraction, as well as by an increase in poly ADP ribose polymerase and Caspase 3 cleavage. BMS-754807 is active in vivo in multiple (epithelial, mesenchymal, and hematopoietic) xenograft tumor models with tumor growth inhibition ranging from 53% to 115% and at a minimum effective dose of as low as 6.25 mg/kg dosed orally daily. Combination studies with BMS-754807 have been done on multiple human tumor cell types and showed in vitro synergies (combination index, <1.0) when combined with cytotoxic, hormonal, and targeted agents. The combination of cetuximab and BMS-754807 in vivo, at multiple dose levels, resulted in improved clinical outcome over single agent treatment. These data show that BMS-754807 is an efficacious, orally active growth factor 1 receptor/insulin receptor family–targeted kinase inhibitor that may act in combination with a wide array of established anticancer agents. [Mol Cancer Ther 2009;8(12):3341–9]


Journal of Medicinal Chemistry | 2009

Discovery of a 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitor (BMS-754807) of insulin-like growth factor receptor (IGF-1R) kinase in clinical development.

Mark D. Wittman; Joan M. Carboni; Zheng Yang; Francis Y. Lee; Melissa Antman; Ricardo M. Attar; Praveen Balimane; Chiehying Chang; Cliff Chen; Lorell Discenza; David B. Frennesson; Marco M. Gottardis; Ann Greer; Warren Hurlburt; Walter Lewis Johnson; David R. Langley; Aixin Li; Jianqing Li; Peiying Liu; Harold Mastalerz; Arvind Mathur; Krista Menard; Karishma Patel; John S. Sack; Xiaopeng Sang; Mark G. Saulnier; Daniel J. Smith; Kevin Stefanski; George L. Trainor; Upender Velaparthi

This report describes the biological activity, characterization, and SAR leading to 9d (BMS-754807) a small molecule IGF-1R kinase inhibitor in clinical development.


Journal of Medicinal Chemistry | 2008

Discovery and evaluation of 4-(2-(4-chloro-1H-pyrazol-1-yl)ethylamino)-3-(6-(1-(3-fluoropropyl)piperidin-4-yl)-4-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-695735), an orally efficacious inhibitor of insulin-like growth factor-1 receptor kinase with broad spectrum in vivo antitumor activity.

Upender Velaparthi; Mark D. Wittman; Peiying Liu; Joan M. Carboni; Francis Y. Lee; Ricardo M. Attar; Praveen Balimane; Wendy Clarke; Michael Sinz; Warren Hurlburt; Karishma Patel; Lorell Discenza; Sean Kim; Marco M. Gottardis; Ann Greer; Aixin Li; Mark G. Saulnier; Zheng Yang; Kurt Zimmermann; George L. Trainor; Dolatrai M. Vyas

We previously reported that 1 (BMS-536924), a benzimidazole inhibitor of the insulin-like growth factor-1 receptor, had demonstrated in vivo antitumor activity. This lead compound was found to have potent CYP3A4 inhibition, CYP3A4 induction mediated by PXR transactivation, poor aqueous solubility, and high plasma protein binding. Herein we disclose the evolution of this chemotype to address these issues. This effort led to 10 (BMS-695735), which exhibits improved ADME properties, a low risk for drug-drug interactions, and in vivo efficacy in multiple xenograft models.


Bioorganic & Medicinal Chemistry Letters | 2008

Balancing oral exposure with Cyp3A4 inhibition in benzimidazole-based IGF-IR inhibitors.

Kurt Zimmermann; Mark D. Wittman; Mark G. Saulnier; Upender Velaparthi; David R. Langley; Xiaopeng Sang; David B. Frennesson; Joan M. Carboni; Aixin Li; Ann Greer; Marco M. Gottardis; Ricardo M. Attar; Zheng Yang; Praveen Balimane; Lorell Discenza; Dolatrai M. Vyas

3-(Benzimidazol-2-yl)-pyridine-2-one-based ATP competitive inhibitors of Insulin-like Growth Factor 1 Kinase (IGF-IR) were optimized for reduced Cyp3A4 inhibition and improved oral exposure. The use of malonate as methyl anion synthon via S(N)Ar reaction and double decarboxylation under mild conditions is demonstrated.


Bioorganic & Medicinal Chemistry Letters | 2008

2-(1H-Imidazol-4-yl)ethanamine and 2-(1H-pyrazol-1-yl)ethanamine side chain variants of the IGF-1R inhibitor BMS-536924

Mark G. Saulnier; David B. Frennesson; Mark D. Wittman; Kurt Zimmermann; Upender Velaparthi; David R. Langley; Charles Struzynski; Xiaopeng Sang; Joan M. Carboni; Aixin Li; Ann Greer; Zheng Yang; Praveen Balimane; Marco M. Gottardis; Ricardo M. Attar; Dolatrai M. Vyas

A series of IGF-1R inhibitors is disclosed, wherein the (m-chlorophenyl)ethanol side chain of BMS-536924 (1) is replaced with a series of 2-(1H-imidazol-4-yl)ethanamine and 2-(1H-pyrazol-1-yl)ethanamine side chains. Some analogs show improved IGF-1R potency and oral exposure. Analogs from both series, 16a and 17f, show in vivo activity comparable to 1 in our constitutively activated IGF-1R Sal tumor model. This may be the due to the improved protein binding in human and mouse serum for imidazole 16a and the excellent oral exposure of pyrazole 17f.


Tetrahedron | 1994

Facile synthesis of a simplified bicyclo[7.3.1] esperamicin-calicheamicin enediyne core

John F. Kadow; Donald Cook; Terrence W. Doyle; David R. Langley; Kahnie M. Pham; Dolatrai M. Vyas; Mark D. Wittman

Abstract An efficient non cobalt mediated route for the synthesis of a simplified bicyclo[7.3.1]enediyne core of the naturally occurring calicheamicins and espe


Bioorganic & Medicinal Chemistry Letters | 2010

SAR of PXR transactivation in benzimidazole-based IGF-1R kinase inhibitors

Kurt Zimmermann; Mark D. Wittman; Mark G. Saulnier; Upender Velaparthi; Xiaopeng Sang; David B. Frennesson; Charles Struzynski; Steven P. Seitz; Liqi He; Joan M. Carboni; Aixin Li; Ann Greer; Marco M. Gottardis; Ricardo M. Attar; Zheng Yang; Praveen Balimane; Lorell Discenza; Francis Y. Lee; Michael Sinz; Sean Kim; Dolatrai M. Vyas

The SAR of PXR transactivation by 3-(benzimidazol-2-yl)-pyridine-2-one based ATP competitive inhibitors of Insulin-like Growth Factor 1 Receptor kinase (IGF-1R) is discussed. Compounds without PXR transactivation, with in vivo antitumor activity, reduced protein binding and improved oral exposure are presented.


Bioorganic & Medicinal Chemistry Letters | 2010

Proline isosteres in a series of 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitors of IGF-1R kinase and IR kinase.

Anthony J. Sampognaro; Mark D. Wittman; Joan M. Carboni; Chiehying Chang; Ann Greer; Warren Hurlburt; John S. Sack; Dolatrai M. Vyas

Pyrrolidine, pyrrolidinone, carbocyclic, and acyclic groups were used as isosteric proline replacements in a series of insulin-like growth factor I receptor kinase/insulin receptor kinase inhibitors. Examples that were similar in potency to proline-containing reference compounds were shown to project a key fluoropyridine amide into a common space, while less potent compounds were not able to do so for reasons of stereochemistry or structural rigidity.

Collaboration


Dive into the Mark D. Wittman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aixin Li

Bristol-Myers Squibb

View shared research outputs
Researchain Logo
Decentralizing Knowledge