Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Langley is active.

Publication


Featured researches published by David R. Langley.


Nature | 2010

Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect

Min Gao; Richard E. Nettles; Makonen Belema; Lawrence B. Snyder; Van N. Nguyen; Robert A. Fridell; Michael H. Serrano-Wu; David R. Langley; Jin-Hua Sun; Donald R. O'Boyle; Julie A. Lemm; Chunfu Wang; Jay O. Knipe; Caly Chien; Richard J. Colonno; Dennis M. Grasela; Nicholas A. Meanwell; Lawrence G. Hamann

The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people. Current therapy relies upon a combination of pegylated interferon-α and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC50) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log10 reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.


Journal of Virology | 2003

Biochemical and Genetic Characterizations of a Novel Human Immunodeficiency Virus Type 1 Inhibitor That Blocks gp120-CD4 Interactions

Qi Guo; Hsu-Tso Ho; Ira B. Dicker; Li Fan; Nannan Zhou; Jacques Friborg; Tao Wang; Brian McAuliffe; Hwei-gene Heidi Wang; Ronald E. Rose; Hua Fang; Helen Scarnati; David R. Langley; Nicholas A. Meanwell; Ralph Abraham; Richard J. Colonno; Pin-Fang Lin

ABSTRACT BMS-378806 is a recently discovered small-molecule human immunodeficiency virus type 1 (HIV-1) attachment inhibitor with good antiviral activity and pharmacokinetic properties. Here, we demonstrate that the compound targets viral entry by inhibiting the binding of the HIV-1 envelope gp120 protein to cellular CD4 receptors via a specific and competitive mechanism. BMS-378806 binds directly to gp120 at a stoichiometry of approximately 1:1, with a binding affinity similar to that of soluble CD4. The potential BMS-378806 target site was localized to a specific region within the CD4 binding pocket of gp120 by using HIV-1 gp120 variants carrying either compound-selected resistant substitutions or gp120-CD4 contact site mutations. Mapping of resistance substitutions to the HIV-1 envelope, and the lack of compound activity against a CD4-independent viral infection confirm the gp120-CD4 interactions as the target in infected cells. BMS-378806 therefore serves as a prototype for this new class of antiretroviral agents and validates gp120 as a viable target for small-molecule inhibitors.


Journal of Virology | 2007

Inhibition of Hepatitis B Virus Polymerase by Entecavir

David R. Langley; Ann W. Walsh; Carl J. Baldick; Betsy J. Eggers; Ronald E. Rose; Steven Levine; A. Jayne Kapur; Richard J. Colonno; Daniel J. Tenney

ABSTRACT Entecavir (ETV; Baraclude) is a novel deoxyguanosine analog with activity against hepatitis B virus (HBV). ETV differs from the other nucleoside/tide reverse transcriptase inhibitors approved for HBV therapy, lamivudine (LVD) and adefovir (ADV), in several ways: ETV is >100-fold more potent against HBV in culture and, at concentrations below 1 μM, displays no significant activity against human immunodeficiency virus (HIV). Additionally, while LVD and ADV are obligate DNA chain terminators, ETV halts HBV DNA elongation after incorporating a few additional bases. Three-dimensional homology models of the catalytic center of the HBV reverse transcriptase (RT)-DNA-deoxynucleoside triphosphate (dNTP) complex, based on the HIV RT-DNA structure, were used with in vitro enzyme kinetic studies to examine the mechanism of action of ETV against HBV RT. A novel hydrophobic pocket in the rear of the RT dNTP binding site that accommodates the exocyclic alkene moiety of ETV was predicted, establishing a basis for the superior potency observed experimentally. HBV DNA chain termination by ETV was accomplished through disfavored energy requirements as well as steric constraints during subsequent nucleotide addition. Validation of the model was accomplished through modeling of LVD resistance substitutions, which caused an eightfold decrease in ETV susceptibility and were predicted to reduce, but not eliminate, the ETV-binding pocket, in agreement with experimental observations. ADV resistance changes did not affect the ETV docking model, also agreeing with experimental results. Overall, these studies explain the potency, mechanism, and cross-resistance profile of ETV against HBV and account for the successful treatment of naive and LVD- or ADV-experienced chronic HBV patients.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers

Samuel W. Gerritz; Christopher Cianci; Sean Kim; Bradley C. Pearce; Carol Deminie; Linda F. Discotto; Brian McAuliffe; B Minassian; Shuhao Shi; Shirong Zhu; Weixu Zhai; Annapurna Pendri; Guo Li; Michael A. Poss; Suzanne Edavettal; Patricia A. McDonnell; Hal A. Lewis; Klaus Maskos; Mario Mörtl; Reiner Kiefersauer; Stefan Steinbacher; Eric T. Baldwin; William Metzler; James Bryson; Matthew D. Healy; Thomas Philip; Mary Zoeckler; Richard Schartman; Michael Sinz; Victor H. Leyva-Grado

Influenza nucleoprotein (NP) plays multiple roles in the virus life cycle, including an essential function in viral replication as an integral component of the ribonucleoprotein complex, associating with viral RNA and polymerase within the viral core. The multifunctional nature of NP makes it an attractive target for antiviral intervention, and inhibitors targeting this protein have recently been reported. In a parallel effort, we discovered a structurally similar series of influenza replication inhibitors and show that they interfere with NP-dependent processes via formation of higher-order NP oligomers. Support for this unique mechanism is provided by site-directed mutagenesis studies, biophysical characterization of the oligomeric ligand:NP complex, and an X-ray cocrystal structure of an NP dimer of trimers (or hexamer) comprising three NP_A:NP_B dimeric subunits. Each NP_A:NP_B dimeric subunit contains two ligands that bridge two composite, protein-spanning binding sites in an antiparallel orientation to form a stable quaternary complex. Optimization of the initial screening hit produced an analog that protects mice from influenza-induced weight loss and mortality by reducing viral titers to undetectable levels throughout the course of treatment.


Journal of Biomolecular Structure & Dynamics | 1998

Molecular Dynamic Simulations of Environment and Sequence Dependent DNA Conformations: The Development of the BMS Nucleic Acid Force Field and Comparison with Experimental Results

David R. Langley

Molecular dynamic (MD) simulations using the BMS nucleic acid force field produce environment and sequence dependent DNA conformations that closely mimic experimentally derived structures. The parameters were initially developed to reproduce the potential energy surface, as defined by quantum mechanics, for a set of small molecules that can be used as the building blocks for nucleic acid macromolecules (dimethyl phosphate, cyclopentane, tetrahydrofuran, etc.). Then the dihedral parameters were fine tuned using a series of condensed phase MD simulations of DNA and RNA (in zero added salt, 4M NaCl, and 75% ethanol solutions). In the tuning process the free energy surface for each dihedral was derived from the MD ensemble and fitted to the conformational distributions and populations observed in 87 A- and B-DNA x-ray and 17 B-DNA NMR structures. Over 41 nanoseconds of MD simulations are presented which demonstrate that the force field is capable of producing stable trajectories, in the correct environments, of A-DNA, double stranded A-form RNA, B-DNA, Z-DNA, and a netropsin-DNA complex that closely reproduce the experimentally determined and/or canonical DNA conformations. Frequently the MD averaged structure is closer to the experimentally determined structure than to the canonical DNA conformation. MD simulations of A- to B- and B- to A-DNA transitions are also shown. A-DNA simulations in a low salt environment cleanly convert into the B-DNA conformation and converge into the RMS space sampled by a low salt simulation of the same sequence starting from B-DNA. In MD simulations using the BMS force field the B-form of d(GGGCCC)2 in a 75% ethanol solution converts into the A-form. Using the same methodology, parameters, and conditions the A-form of d(AAATTT)2 correctly converts into the B-DNA conformation. These studies demonstrate that the force field is capable of reproducing both environment and sequence dependent DNA structures. The 41 nanoseconds (nsec) of MD simulations presented in this paper paint a global picture which suggests that the DNA structures observed in low salt solutions are largely due to the favorable internal energy brought about by the nearly uniform screening of the DNA electrostatics. While the conformations sampled in high salt or mixed solvent environments occur from selective and asymmetric screening of the phosphate groups and DNA grooves, respectively, brought about by sequence induced ion and solvent packing.


Journal of Medicinal Chemistry | 2009

Discovery of a 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitor (BMS-754807) of insulin-like growth factor receptor (IGF-1R) kinase in clinical development.

Mark D. Wittman; Joan M. Carboni; Zheng Yang; Francis Y. Lee; Melissa Antman; Ricardo M. Attar; Praveen Balimane; Chiehying Chang; Cliff Chen; Lorell Discenza; David B. Frennesson; Marco M. Gottardis; Ann Greer; Warren Hurlburt; Walter Lewis Johnson; David R. Langley; Aixin Li; Jianqing Li; Peiying Liu; Harold Mastalerz; Arvind Mathur; Krista Menard; Karishma Patel; John S. Sack; Xiaopeng Sang; Mark G. Saulnier; Daniel J. Smith; Kevin Stefanski; George L. Trainor; Upender Velaparthi

This report describes the biological activity, characterization, and SAR leading to 9d (BMS-754807) a small molecule IGF-1R kinase inhibitor in clinical development.


Protein Science | 2014

The Crystal Structure of Ns5A Domain 1 from Genotype 1A Reveals New Clues to the Mechanism of Action for Dimeric Hcv Inhibitors.

Sebastian Lambert; David R. Langley; James A. Garnett; Richard Angell; Katy Hedgethorne; Nicholas A. Meanwell; Steve Matthews

New direct acting antivirals (DAAs) such as daclatasvir (DCV; BMS‐790052), which target NS5A function with picomolar potency, are showing promise in clinical trials. The exact nature of how these compounds have an inhibitory effect on HCV is unknown; however, major resistance mutations appear in the N‐terminal region of NS5A that include the amphipathic helix and domain 1. The dimeric symmetry of these compounds suggests that they act on a dimer of NS5A, which is also consistent with the presence of dimers in crystals of NS5A domain 1 from genotype 1b. Genotype 1a HCV is less potently affected by these compounds and resistance mutations have a greater effect than in the 1b genotypes. We have obtained crystals of domain 1 of the important 1a NS5A homologue and intriguingly, our X‐ray crystal structure reveals two new dimeric forms of this domain. Furthermore, the high solvent content (75%) makes it ideal for ligand‐soaking. Daclatasvir (DCV) shows twofold symmetry suggesting NS5A dimers may be of physiological importance and serve as potential binding sites for DCV. These dimers also allow for new conformations of a NS5A expansive network which could explain its operation on the membranous web. Additionally, sulfates bound in the crystal structure may provide evidence for the previously proposed RNA binding groove, or explain regulation of NS5A domain 2 and 3 function and phosphorylation, by domain 1.


Journal of Medicinal Chemistry | 2014

Discovery and development of hepatitis C virus NS5A replication complex inhibitors.

Makonen Belema; Omar D. Lopez; John A. Bender; Jeffrey L. Romine; Denis R. St. Laurent; David R. Langley; Julie A. Lemm; Donald R. O’Boyle; Jin-Hua Sun; Chunfu Wang; Robert A. Fridell; Nicholas A. Meanwell

Lead inhibitors that target the function of the hepatitis C virus (HCV) nonstructural 5A (NS5A) protein have been identified by phenotypic screening campaigns using HCV subgenomic replicons. The demonstration of antiviral activity in HCV-infected subjects by the HCV NS5A replication complex inhibitor (RCI) daclatasvir (1) spawned considerable interest in this mechanistic approach. In this Perspective, we summarize the medicinal chemistry studies that led to the discovery of 1 and other chemotypes for which resistance maps to the NS5A protein and provide synopses of the profiles of many of the compounds currently in clinical trials. We also summarize what is currently known about the NS5A protein and the studies using NS5A RCIs and labeled analogues that are helping to illuminate aspects of both protein function and inhibitor interaction. We conclude with a synopsis of the results of notable clinical trials with HCV NS5A RCIs.


Tetrahedron Letters | 1996

Diastereoselective addition of Grignard reagents to azetidine-2,3-dione: Synthesis of novel Taxol® analogues

Joydeep Kant; Wendy S. Schwartz; Craig R. Fairchild; Qi Gao; Stella Huang; Byron H. Long; John F. Kadow; David R. Langley; Vittorio Farina; Dolatrai M. Vyas

Abstract Synthesis and cytotoxicity properties of novel C-2′ analogues of paclitaxel are described. The analogues were synthesized using Holtons β-lactam approach to append the side chain on baccatin III. The key intermediate to the synthesis of novel analogues was prepared employing an unprecedented stereocontrolled addition of Grignard reagent to a chiral azetidine-2,3-dione.


Journal of Medicinal Chemistry | 2014

Hepatitis C virus NS5A replication complex inhibitors: the discovery of daclatasvir.

Makonen Belema; Van N. Nguyen; Carol Bachand; Dan H. Deon; Jason Goodrich; Clint A. James; Rico Lavoie; Omar D. Lopez; Alain Martel; Jeffrey L. Romine; Edward H. Ruediger; Lawrence B. Snyder; Denis R. St. Laurent; Fukang Yang; Juliang Zhu; Henry S. Wong; David R. Langley; Stephen P. Adams; Glenn H. Cantor; Anjaneya Chimalakonda; Aberra Fura; Benjamin M. Johnson; Jay O. Knipe; Dawn D. Parker; Kenneth S. Santone; Robert A. Fridell; Julie A. Lemm; Donald R. O’Boyle; Richard J. Colonno; Min Gao

The biphenyl derivatives 2 and 3 are prototypes of a novel class of NS5A replication complex inhibitors that demonstrate high inhibitory potency toward a panel of clinically relevant HCV strains encompassing genotypes 1-6. However, these compounds exhibit poor systemic exposure in rat pharmacokinetic studies after oral dosing. The structure-activity relationship investigations that improved the exposure properties of the parent bis-phenylimidazole chemotype, culminating in the identification of the highly potent NS5A replication complex inhibitor daclatasvir (33) are described. An element critical to success was the realization that the arylglycine cap of 2 could be replaced with an alkylglycine derivative and still maintain the high inhibitory potency of the series if accompanied with a stereoinversion, a finding that enabled a rapid optimization of exposure properties. Compound 33 had EC50 values of 50 and 9 pM toward genotype-1a and -1b replicons, respectively, and oral bioavailabilities of 38-108% in preclinical species. Compound 33 provided clinical proof-of-concept for the NS5A replication complex inhibitor class, and regulatory approval to market it with the NS3/4A protease inhibitor asunaprevir for the treatment of HCV genotype-1b infection has recently been sought in Japan.

Collaboration


Dive into the David R. Langley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge