Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark E. Huntley is active.

Publication


Featured researches published by Mark E. Huntley.


Environmental Science & Technology | 2012

Air–Water Fluxes of N2O and CH4 during Microalgae (Staurosira sp.) Cultivation in an Open Raceway Pond

Sara Ferrón; David T. Ho; Zackary I. Johnson; Mark E. Huntley

The industrial-scale production of biofuels from cultivated microalgae has gained considerable interest in the last several decades. While the climate benefits of microalgae cultivation that result from the capture of atmospheric CO(2) are known, the counteracting effect from the potential emission of other greenhouse gases has not been well quantified. Here, we report the results of a study conducted at an industrial pilot facility in Hawaii to determine the air-water fluxes of N(2)O and CH(4) from open raceway ponds used to grow the marine diatom Staurosira sp. as a feedstock for biofuel. Dissolved O(2), CH(4), and N(2)O concentrations were measured over a 24 h cycle. During this time, four SF(6) tracer release experiments were conducted to quantify gas transfer velocities in the ponds, and these were then used to calculate air-water fluxes. Our results show that pond waters were consistently supersaturated with CH(4) (up to 725%) resulting in an average emission of 19.9 ± 5.6 μmol CH(4) m(-2) d(-1). Upon NO(3)(-) depletion, the pond shifted from being a source to being a sink of N(2)O, with an overall net uptake during the experimental period of 3.4 ± 3.5 μmol N(2)O m(-2) d(-1). The air-water fluxes of N(2)O and CH(4) expressed as CO(2) equivalents of global warming potential were 2 orders of magnitude smaller than the overall CO(2) uptake by the microalgae.


Frontiers in Marine Science | 2016

Defatted Biomass of the Microalga, Desmodesmus sp., Can Replace Fishmeal in the Feeds for Atlantic salmon

Viswanath Kiron; Mette Sørensen; Mark E. Huntley; Ghana Kalerammana Vasanth; Yangyang Gong; Dalia Dahle; Anjana Mahesh Palihawadana

Microalgal biomass is a potential feed ingredient that can replace fishmeal and ensure sustainability standards in aquaculture. To understand the efficacy of the defatted biomass from the marine microalga, Desmodesmus sp. a 70-day feeding study was performed with Atlantic salmon (Salmo salar) smolts. Three groups of fish (av. wt. 167 g) were offered either a control feed (without the microalga) or the microalga-containing (10/20%) feeds. At the end of the feeding period, the growth indices (condition factor, specific growth rate) and survival of the microalga-fed fish were not significantly different from the respective values of the control fish, but the feed conversion ratios were inferior. The proximate composition of the whole body of salmon from the three groups did not vary significantly. Compared to the control fish, the alga-fed fish had lower lipid content (10% alga-fed fish) in their fillet. The protein and lipid digestibility in the three feeds did not differ significantly, but the digestibility of energy in the 10% alga-feed was significantly lower than that of the control feed. Furthermore, comparison of the distal intestinal proteome of Atlantic salmon revealed that the expressions of Alpha-2-HS-glycoprotein-like (Ahsg), Myosin-11 isoform X1 (My11) and Dihydrolipoyl dehydrogenase, mitochondrial-like (Dld) were altered by the microalgal feeding. Examination of the physiological status of the fish based on the serum antioxidant capacities did not reveal any alga-feed-related differences. Moreover, the expression of the selected immune and inflammatory marker genes and the micromorphological observations did not indicate any aberration in the intestinal health of the microalga-fed fish. It is possible to include 20% of defatted Desmodesmus sp. in the feeds of Atlantic salmon.


Environmental Research Letters | 2016

Algal food and fuel coproduction can mitigate greenhouse gas emissions while improving land and water-use efficiency

Michael J. Walsh; Léda Gerber Van Doren; Deborah L. Sills; Ian Archibald; Colin M. Beal; Xin Gen Lei; Mark E. Huntley; Zackary I. Johnson; Charles H. Greene

The goals of ensuring energy, water, food, and climate security can often conflict. Microalgae (algae) are being pursued as a feedstock for both food and fuels—primarily due to algaes high areal yield and ability to grow on non-arable land, thus avoiding common bioenergy-food tradeoffs. However, algal cultivation requires significant energy inputs that may limit potential emission reductions. We examine the tradeoffs associated with producing fuel and food from algae at the energy–food–water–climate nexus. We use the GCAM integrated assessment model to demonstrate that algal food production can promote reductions in land-use change emissions through the offset of conventional agriculture. However, fuel production, either via co-production of algal food and fuel or complete biomass conversion to fuel, is necessary to ensure long-term emission reductions, due to the high energy costs of cultivation. Cultivation of salt–water algae for food products may lead to substantial freshwater savings; but, nutrients for algae cultivation will need to be sourced from waste streams to ensure sustainability. By reducing the land demand of food production, while simultaneously enhancing food and energy security, algae can further enable the development of terrestrial bioenergy technologies including those utilizing carbon capture and storage. Our results demonstrate that large-scale algae research and commercialization efforts should focus on developing both food and energy products to achieve environmental goals.


Earth’s Future | 2017

Geoengineering, marine microalgae, and climate stabilization in the 21st century

Charles H. Greene; Mark E. Huntley; Ian Archibald; Léda N. Gerber; Deborah L. Sills; Joe Granados; Colin M. Beal; Michael J. Walsh

Society has set ambitious targets for stabilizing mean global temperature. To attain these targets, it will have to reduce CO2 emissions to near zero by mid-century and subsequently remove CO2 from the atmosphere during the latter half of the century. There is a recognized need to develop technologies for CO2 removal; however, attempts to develop direct air capture systems have faced both energetic and financial constraints. Recently, BioEnergy with Carbon Capture and Storage (BECCS) has emerged as a leading candidate for removing CO2 from the atmosphere. However, BECCS can have negative consequences on land, nutrient, and water use as well as biodiversity and food production. Here, we describe an alternative approach based on the large-scale industrial production of marine microalgae. When cultivated with proper attention to power, carbon, and nutrient sources, microalgae can be processed to produce a variety of biopetroleum products, including carbon neutral biofuels for the transportation sector and long-lived, potentially carbon-negative construction materials for the built environment. In addition to these direct roles in mitigating and potentially reversing the effects of fossil CO2 emissions, microalgae can also play an important indirect role. Because microalgae exhibit much higher primary production rates than terrestrial plants, they require much less land area to produce an equivalent amount of bioenergy and/or food. On a global scale, the avoided emissions resulting from displacement of conventional agriculture may exceed the benefits of microalgae biofuels in achieving climate stabilization goals.


Earth’s Future | 2018

Integrating Algae with Bioenergy Carbon Capture and Storage (ABECCS) Increases Sustainability

Colin M. Beal; Ian Archibald; Mark E. Huntley; Charles H. Greene; Zackary I. Johnson

Bioenergy Carbon Capture and Storage (BECCS) has been proposed to reduce atmospheric CO2 concentrations, but concerns remain about competition for arable land and freshwater. The synergistic integration of algae production, which does not require arable land or freshwater, with BECCS (called “ABECCS”) can reduce CO2 emissions without competing with agriculture. This study presents a techno-economic and life-cycle assessment for co-locating a 121-ha algae facility with a 2,680-ha eucalyptus forest for BECCS. The eucalyptus biomass fuels combined heat and power generation (CHP) with subsequent amine based carbon capture and storage (CCS). A portion of the captured CO2 is used for growing algae and the remainder is sequestered. Biomass combustion supplies CO2, heat, and electricity, thus increasing the range of sites suitable for algae cultivation. Economic, energetic, and environmental impacts are considered. The system yields as much protein as soybeans while generating 61.5 TJ of electricity and sequestering 29,600 t of CO2 per year. More energy is generated than consumed and the freshwater footprint is roughly equal to that for soybeans. Financial break-even is achieved for product value combinations ranging from 1) algal biomass sold for


PLOS ONE | 2017

Nannochloropsis oceania-derived defatted meal as an alternative to fishmeal in Atlantic salmon feeds

Mette Sørensen; Yangyang Gong; Fridrik Bjarnason; Ghana Kalerammana Vasanth; Dalia Dahle; Mark E. Huntley; Viswanath Kiron

1,780/t without a carbon credit to 2) algal biomass sold for


Scientific Reports | 2018

Marine microalgae commercial production improves sustainability of global fisheries and aquaculture

Colin M. Beal; Léda N. Gerber; Supis Thongrod; Wutiporn Phromkunthong; Viswanath Kiron; Joe Granados; Ian Archibald; Charles H. Greene; Mark E. Huntley

100/t with a carbon credit of


Archive | 2006

Continuous-batch hybrid process for production of oil and other useful products from photosynthetic microbes

Mark E. Huntley; Donald G. Redalje

396/t. Sensitivity analysis shows significant reductions to the cost of carbon sequestration are possible. The ABECCS system represents a unique technology for negative emissions without reducing protein production or increasing water demand, and should therefore be included in the suite of technologies being considered to address global sustainability.


Algal Research-Biomass Biofuels and Bioproducts | 2015

Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment

Colin M. Beal; Léda N. Gerber; Deborah L. Sills; Mark E. Huntley; Stephen C. Machesky; Michael J. Walsh; Jefferson W. Tester; Ian Archibald; Joe Granados; Charles H. Greene

Defatted microalgal biomass derived from biorefinery can be potential feed ingredients for carnivorous fish. The present study investigated the growth, feed intake:gain and health parameters in Atlantic salmon fed for 84 days with defatted Nannochloropsis oceania as a fishmeal replacer. Fish fed feeds containing the algal biomass (at 10 and 20% inclusion, alga groups) were compared with groups that consumed alga-devoid feeds (control group). The fish that received 20% alga tended to have reduced weight gain and specific growth rate. Condition factor, feed conversion ratio and feed intake of this fish group were significantly different when compared with the control group. Hepatosomatic and viscerosomatic indices, whole body and fillet proximate composition were not affected by the dietary treatments. Digestibility of dry matter, protein, lipid, ash and energy, as well as retention of lipid and energy of the fish that received feed with 20% alga meal were also significantly different from those of the control group. Serum superoxide dismutase activity of the 10% alga-fed fish was significantly higher compared with the control fish. Although alga feeding did not cause any distal intestinal inflammation, the intestinal proteins that were altered upon feeding 20% algal meal might be pointing to systemic physiological disturbances. In conclusion, feeds with 20% alga had a negative effect on feed intake, FCR, lipid and energy retention and health of the fish. The defatted Nannochloropsis oceania can be used at modest inclusion levels, around 10%, without negative effects on the performance of Atlantic salmon.


Algal Research-Biomass Biofuels and Bioproducts | 2015

Demonstrated Large-Scale Production of Marine Microalgae for Fuels and Feed

Mark E. Huntley; Zackary I. Johnson; Susan L Brown; Deborah L. Sills; Léda N. Gerber; Ian Archibald; Stephen C. Machesky; Joe Granados; Colin M. Beal; Charles H. Greene

A method is described for saving 30% of the world fish catch by producing fishmeal and fish oil replacement products from marine microalgae, the natural source of proteins and oils in the marine food web. To examine the commercial aspects of such a method, we adapt a model based on results of microalgae production in Hawaii and apply it to Thailand, the world’s fourth largest producer of fishmeal. A model facility of 111 ha would produce 2,750 tonnes yr−1 of protein and 2,330 tonnes yr−1 of algal oil, at a capital cost of

Collaboration


Dive into the Mark E. Huntley's collaboration.

Top Co-Authors

Avatar

Donald G. Redalje

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin M. Beal

University of Hawaii at Hilo

View shared research outputs
Top Co-Authors

Avatar

Ian Archibald

University of Hawaii at Hilo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joe Granados

University of Hawaii at Hilo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pearn P. Niiler

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge