Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark E. Lauer is active.

Publication


Featured researches published by Mark E. Lauer.


Nature Immunology | 2011

The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation.

Katarzyna Bulek; Caini Liu; Shadi Swaidani; Liwen Wang; Richard C. Page; Muhammet Fatih Gulen; Tomasz Herjan; Amina Abbadi; Wen Qian; Dongxu Sun; Mark E. Lauer; Vincent C. Hascall; Saurav Misra; Mark R. Chance; Mark Aronica; Thomas A. Hamilton; Xiaoxia Li

Interleukin 17 (IL-17) is critical in the pathogenesis of inflammatory and autoimmune diseases. Here we report that Act1, the key adaptor for the IL-17 receptor (IL-7R), formed a complex with the inducible kinase IKKi after stimulation with IL-17. Through the use of IKKi-deficient mice, we found that IKKi was required for IL-17-induced expression of genes encoding inflammatory molecules in primary airway epithelial cells, neutrophilia and pulmonary inflammation. IKKi deficiency abolished IL-17-induced formation of the complex of Act1 and the adaptors TRAF2 and TRAF5, activation of mitogen-activated protein kinases (MAPKs) and mRNA stability, whereas the Act1–TRAF6–transcription factor NF-κB axis was retained. IKKi was required for IL-17-induced phosphorylation of Act1 on Ser311, adjacent to a putative TRAF-binding motif. Substitution of the serine at position 311 with alanine impaired the IL-17-mediated Act1-TRAF2-TRAF5 interaction and gene expression. Thus, IKKi is a kinase newly identified as modulating IL-17 signaling through its effect on Act1 phosphorylation and consequent function.


FEBS Journal | 2011

Hyaluronan matrices in pathobiological processes

Aimin Wang; Carol de la Motte; Mark E. Lauer; Vincent C. Hascall

Hyaluronan matrices are ubiquitous in normal and pathological biological processes. This remarkable diversity is related to their unique mechanism of synthesis by hyaluronan synthases. These enzymes are normally activated in the plasma membrane and utilize cytosolic substrates directly to form these large polyanionic glycosaminoglycans, which are extruded directly into the extracellular space. The extracellular matrices that are formed interact with cell surface receptors, notably CD44, that often dictate the biological processes, as described in the accompanying minireviews of this series. This article focuses on the discovery in recent studies that many cell stress responses initiate the synthesis of a monocyte‐adhesive hyaluronan extracellular matrix, which forms a central focus for subsequent inflammatory processes that are modulated by the dialogue between the matrix and the inflammatory cells. The mechanisms involve active hyaluronan synthases at the cell membrane when cell stresses occur at physiological levels of glucose. However, dividing cells at hyperglycemic levels of glucose initiate the synthesis of hyaluronan in intracellular compartments, which induces endoplasmic reticulum stress and autophagy, processes that probably contribute greatly to diabetic pathologies.


Journal of Biological Chemistry | 2009

Primary Murine Airway Smooth Muscle Cells Exposed to Poly(I,C) or Tunicamycin Synthesize a Leukocyte-adhesive Hyaluronan Matrix

Mark E. Lauer; Durba Mukhopadhyay; Csaba Fülöp; Carol de la Motte; Alana K. Majors; Vincent C. Hascall

Asthmatic attacks often follow viral infections with subsequent airway smooth muscle cell proliferation and the formation of an abnormal hyaluronan extracellular matrix with infiltrated leukocytes. In this study, we show that murine airway smooth muscle cells (MASM) treated with polyinosinic acid-polycytidylic acid (poly(I,C)), a double-stranded RNA that simulates a viral infection, synthesize an abnormal hyaluronan matrix that binds leukocytes (U937 cells). Synthesis of this matrix is initiated rapidly and accumulates linearly for ∼10 h, reaching a plateau level ∼7-fold higher than control cultures. MASM cells treated with tunicamycin, to induce endoplasmic reticulum stress, also rapidly initiate synthesis of the abnormal hyaluronan matrix with linear accumulation for ∼10 h, but only reach a plateau level ∼2-fold higher than control cultures. In contrast to poly(I,C), the response to tunicamycin depends on cell density, with pre-confluent cells producing more abnormal matrix per cell. Furthermore, U937 cell adhesion per hyaluronan content is higher in the sparse matrix produced in response to tunicamycin, suggesting that the structure in the poly(I,C)-induced matrix masks potential binding sites. When MASM cells were exposed to tunicamycin and poly(I,C) at the same time, U937 cell adhesion was partially additive, implying that these two toxins stimulate hyaluronan synthesis through two different pathways. We also characterized the size of hyaluronan produced by MASM cells, in response to poly(I,C) and tunicamycin, and we found that it ranges from 1500 to 4000 kDa, the majority of which was ∼4000 kDa and not different in size than hyaluronan made by untreated cells.


Journal of Biological Chemistry | 2011

Pericellular Versican Regulates the Fibroblast-Myofibroblast Transition: A ROLE FOR ADAMTS5 PROTEASE-MEDIATED PROTEOLYSIS*

Noriko Hattori; David A. Carrino; Mark E. Lauer; Amit Vasanji; James D. Wylie; Courtney M. Nelson; Suneel S. Apte

The cell and its glycosaminoglycan-rich pericellular matrix (PCM) comprise a functional unit. Because modification of PCM influences cell behavior, we investigated molecular mechanisms that regulate PCM volume and composition. In fibroblasts and other cells, aggregates of hyaluronan and versican are found in the PCM. Dermal fibroblasts from Adamts5−/− mice, which lack a versican-degrading protease, ADAMTS5, had reduced versican proteolysis, increased PCM, altered cell shape, enhanced α-smooth muscle actin (SMA) expression and increased contractility within three-dimensional collagen gels. The myofibroblast-like phenotype was associated with activation of TGFβ signaling. We tested the hypothesis that fibroblast-myofibroblast transition in Adamts5−/− cells resulted from versican accumulation in PCM. First, we noted that versican overexpression in human dermal fibroblasts led to increased SMA expression, enhanced contractility, and increased Smad2 phosphorylation. In contrast, dermal fibroblasts from Vcan haploinsufficient (Vcanhdf/+) mice had reduced contractility relative to wild type fibroblasts. Using a genetic approach to directly test if myofibroblast transition in Adamts5−/− cells resulted from increased PCM versican content, we generated Adamts5−/−;Vcanhdf/+ mice and isolated their dermal fibroblasts for comparison with dermal fibroblasts from Adamts5−/− mice. In Adamts5−/− fibroblasts, Vcan haploinsufficiency or exogenous ADAMTS5 restored normal fibroblast contractility. These findings demonstrate that altering PCM versican content through proteolytic activity of ADAMTS5 profoundly influenced the dermal fibroblast phenotype and may regulate a phenotypic continuum between the fibroblast and its alter ego, the myofibroblast. We propose that a physiological function of ADAMTS5 in dermal fibroblasts is to maintain optimal versican content and PCM volume by continually trimming versican in hyaluronan-versican aggregates.


Matrix Biology | 2011

Hyaluronan deposition and correlation with inflammation in a murine ovalbumin model of asthma.

Georgiana Cheng; Shadi Swaidani; Manisha Sharma; Mark E. Lauer; Vincent C. Hascall; Mark Aronica

Asthma is a chronic inflammatory disease of the airways characterized by airway remodeling, which includes changes in the extracellular matrix (ECM). However the role of the ECM in mediating these changes is poorly understood. Hyaluronan (HA), a major component of the ECM, has been implicated in asthma as well as in many other biological processes. Our study investigates the processes involved in HA synthesis, deposition, localization and degradation during an acute and chronic murine model of ovalbumin (OVA)-induced allergic pulmonary inflammation. Mice were sensitized, challenged to OVA and sacrificed at various time points during an 8-week challenge protocol. Bronchoalveolar lavage (BAL) fluids, blood, and lung tissue were collected for study. RNA, HA, protein and histopathology were analyzed. Analyses of lung sections and BAL fluids revealed an early deposition and an increase in HA levels within 24 h of antigen exposure. HA levels peaked at day 8 in BAL, while inflammatory cell recovery peaked at day 6. Hyaluronan synthase (HAS)1 and HAS2 on RNA levels peaked within 2 h of antigen exposure, while hyaluronidase (HYAL)1 and HYAL2 on RNA levels decreased. Both inflammatory cell infiltrates and collagen deposition co-localized with HA deposition within the lungs. These data support a role for HA in the pathogenesis of inflammation and airway remodeling in a murine model of asthma. HA deposition appears largely due to up regulation of HAS1 and HAS2. In addition, HA appears to provide the scaffolding for inflammatory cell accumulation as well as for new collagen synthesis and deposition.


Journal of Investigative Dermatology | 2012

Enhanced Inflammation and Accelerated Wound Closure Following Tetraphorbol Ester Application or Full-Thickness Wounding in Mice Lacking Hyaluronan Synthases Has1 and Has3

Judith A. Mack; Ron J. Feldman; Naoki Itano; Koji Kimata; Mark E. Lauer; Vincent C. Hascall; Edward V. Maytin

Hyaluronan (HA) is an abundant matrix molecule whose functions in the skin remain to be fully defined. To explore the roles of HA in cutaneous injury responses, double-knockout mice (abbreviated as Has1/3 null) that lack two HA synthase enzymes (Has1 and Has3) but still express functional Has2, were used in two types of experiments: (i) application of 12-O-tetradecanoylphorbol-13-acetate (TPA), and (ii) full-thickness wounding of the skin. Uninjured Has1/3 null mice were phenotypically normal. However, after TPA, the accumulation of HA that normally occurs in wildtype epidermis was blunted in Has1/3 null epidermis. In excisional wound healing experiments, wound closure was significantly faster in Has1/3 null than in wildtype mice. Coincident with this abnormal wound healing, a marked decrease in epidermal and dermal HA and a marked increase in neutrophil efflux from cutaneous blood vessels were observed in Has1/3 null skin relative to wildtype skin. Has1/3 null wounds displayed an earlier onset of myofibroblast differentiation. In summary, selective loss of Has1 and Has3 leads to a pro-inflammatory milieu that favors recruitment of neutrophils and other inflammation-related changes in the dermis.


Journal of Biological Chemistry | 2008

Differentiated Murine Airway Epithelial Cells Synthesize a Leukocyte-adhesive Hyaluronan Matrix in Response to Endoplasmic Reticulum Stress

Mark E. Lauer; Serpil C. Erzurum; Durba Mukhopadhyay; Amit Vasanji; Judith Drazba; Aimin Wang; Csaba Fülöp; Vincent C. Hascall

In this report, we describe a novel method for culturing murine trachea epithelial cells on a native basement membrane at an air-liquid interface to produce a pseudostratified, differentiated airway epithelium composed of ciliated and nonciliated cells. This model was used to examine hyaluronan synthesis by the airway epithelial cells (AECs) in response to poly(I,C) and tunicamycin. The former induces a response similar to viral infection, and the latter is a bacterial toxin known to induce endoplasmic reticulum (ER) stress. We found significant accumulation of hyaluronan on the apical surface of the AECs in response to ER stress, but, unlike previously reported results with smooth muscle cells, no increase in hyaluronan was observed in response to poly(I,C). Monocytic U937 cells adhered at 4 °C to the apical surface of the AECs subjected to ER stress by a mechanism almost entirely mediated by hyaluronan. The U937 cells spontaneously released themselves from the abnormal hyaluronan matrix when their metabolism was restored by shifting the temperature from 4 to 37 °C in a custom-made flow chamber. Time lapse confocal microscopy permitted live imaging of this interaction between the U937 cells and the hyaluronan matrix and their subsequent response at 37 °C. Within 45 min, we observed dynamic protrusions of the U937 cell plasma membrane into nearby hyaluronan matrix, resulting in the degradation of this matrix. Simultaneously, we observed some reorganization of the hyaluronan matrix, from a generalized, apical distribution to localized regions around the AEC tight junctions. We discuss the implications these results might have for the airway epithelium and its relation to airway inflammation and hyperresponsiveness associated with asthma and other airway diseases.


Journal of Biological Chemistry | 2013

Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Amplifies Hyaluronan Synthesis by Airway Smooth Muscle Cells

Mark E. Lauer; Georgiana Cheng; Shadi Swaidani; Mark Aronica; Paul H. Weigel; Vincent C. Hascall

Background: TSG-6 transfers heavy chains (HCs) from the inter-α-inhibitor to hyaluronan (HA), increasing its avidity for leukocytes. Results: Recombinant TSG-6 increased leukocyte adhesion to HA and its accumulation in airway cells. Conclusion: In addition to its ability to transfer HCs to HA, TSG-6 amplifies HA synthesis. Significance: TSG-6 is a potent regulator of HA synthesis and is likely to be involved in a variety of inflammatory diseases. We tested the hypothesis that the artificial addition of heavy chains from inter-α-inhibitor to hyaluronan (HA), by adding recombinant TSG-6 (TNF-stimulated gene-6) to the culture medium of murine airway smooth muscle (MASM) cells, would enhance leukocyte binding to HA cables produced in response to poly(I:C). As predicted, the addition of heavy chains to HA cables enhanced leukocyte adhesion to these cables, but it also had several unexpected effects. (i) It produced thicker, more pronounced HA cables. (ii) It increased the accumulation of HA in the cell-associated matrix. (iii) It decreased the amount of HA in the conditioned medium. Importantly, these effects were observed only when TSG-6 was administered in the presence of poly(I:C), and TSG-6 did not exert any effect on its own. Increased HA synthesis occurred during active, poly(I:C)-induced HA synthesis and did not occur when TSG-6 was added after poly(I:C)-induced HA synthesis was complete. MASM cells derived from TSG-6−/−, HAS1/3−/−, and CD44−/− mice amplified HA synthesis in response to poly(I:C) + TSG-6 in a manner similar to WT MASM cells, demonstrating that they are expendable in this process. We conclude that TSG-6 increases the accumulation of HA in the cell-associated matrix, partially by preventing its dissolution from the cell-associated matrix into the conditioned medium, but primarily by inducing HA synthesis.


Journal of Biological Chemistry | 2013

Irreversible heavy chain transfer to hyaluronan oligosaccharides by tumor necrosis factor stimulated gene-6

Mark E. Lauer; Tibor T. Glant; Paul L. DeAngelis; F. Michael Haller; M. Elaine Husni; Vincent C. Hascall; Anthony Calabro

Background: TSG-6 transfers heavy chains from inter-α-inhibitor to hyaluronan. Results: Heavy chain transfer to hyaluronan by TSG-6 is reversible for high molecular weight hyaluronan but irreversible for hyaluronan oligosaccharides. Conclusion: High molecular weight hyaluronan functions as both a heavy chain acceptor and a heavy chain donor, whereas hyaluronan oligosaccharides function only as heavy chain acceptors. Significance: Hyaluronan oligosaccharides have potential to remove heavy chains from pathological hyaluronan. The covalent transfer of heavy chains (HCs) from inter-α-inhibitor (IαI) to hyaluronan (HA) via the protein product of tumor necrosis factor-stimulated gene-6 (TSG-6) forms the HC-HA complex, a pathological form of HA that promotes the adhesion of leukocytes to HA matrices. The transfer of HCs to high molecular weight (HMW) HA is a reversible event whereby TSG-6 can shuffle HCs from one HA molecule to another. Therefore, HMW HA can serve as both an HC acceptor and an HC donor. In the present study, we show that transfer of HCs to low molecular weight HA oligosaccharides is an irreversible event where subsequent shuffling does not occur, i.e. HA oligosaccharides from 8 to 21 monosaccharide units in length can serve as HC acceptors, but are unable to function as HC donors. We show that the HC-HA complex is present in the synovial fluid of mice subjected to systemic and monoarticular mouse models of rheumatoid arthritis. Furthermore, we demonstrate that HA oligosaccharides can be used, with TSG-6, to irreversibly shuffle HCs from pathological, HMW HC-HA to HA oligosaccharides, thereby restoring HC-HA matrices from the inflamed joint to their normal state, unmodified with HCs. This process was also effective for HC-HA in the synovial fluid of human rheumatoid arthritis patients (in vitro).


Journal of Biological Chemistry | 2013

TSG-6 protein is crucial for the development of pulmonary hyaluronan deposition, eosinophilia, and airway hyperresponsiveness in a murine model of asthma.

Shadi Swaidani; Georgiana Cheng; Mark E. Lauer; Manisha Sharma; Vincent C. Hascall; Mark Aronica

Background: TSG-6 is important in the organization of hyaluronan (HA). Results: Lack of TSG-6 results in diminished HA accumulation, inflammation, and airway hyperresponsiveness. Conclusion: TSG-6 is essential for the pathological manifestations in a murine model of asthma. Significance: TSG-6 is likely to contribute to the pathogenesis of asthma. Hyaluronan (HA) deposition is often correlated with mucosal inflammatory responses, where HA mediates both protective and pathological responses. By modifying the HA matrix, Tnfip6 (TNF-α-induced protein-6; also known as TSG-6 (TNF-stimulated gene-6)) is thought to potentiate anti-inflammatory and anti-plasmin effects that are inhibitory to leukocyte extravasation. In this study, we examined the role of endogenous TSG-6 in the pathophysiological responses associated with acute allergic pulmonary inflammation. Compared with wild-type littermate controls, TSG-6−/− mice exhibited attenuated inflammation marked by a significant decrease in pulmonary HA concentrations measured in the bronchoalveolar lavage and lung tissue. Interestingly, despite the equivalent induction of both humoral and cellular Th2 immunity and the comparable levels of cytokines and chemokines typically associated with eosinophilic pulmonary inflammation, airway eosinophilia was significantly decreased in TSG-6−/− mice. Most importantly, contrary to their counterpart wild-type littermates, TSG-6−/− mice were resistant to the induction of airway hyperresponsiveness and manifested improved lung mechanics in response to methacholine challenge. Our study demonstrates that endogenous TSG-6 is dispensable for the induction of Th2 immunity but is essential for the robust increase in pulmonary HA deposition, propagation of acute eosinophilic pulmonary inflammation, and development of airway hyperresponsiveness. Thus, TSG-6 is implicated in the experimental murine model of allergic pulmonary inflammation and is likely to contribute to the pathogenesis of asthma.

Collaboration


Dive into the Mark E. Lauer's collaboration.

Top Co-Authors

Avatar

Vincent C. Hascall

Cleveland Clinic Lerner Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serpil C. Erzurum

Cleveland Clinic Lerner College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge