Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark E. Ridgeway is active.

Publication


Featured researches published by Mark E. Ridgeway.


Journal of the American Society for Mass Spectrometry | 2015

Fundamentals of Trapped Ion Mobility Spectrometry

Karsten Michelmann; Joshua A. Silveira; Mark E. Ridgeway; Melvin A. Park

AbstractTrapped ion mobility spectrometry (TIMS) is a relatively new gas-phase separation method that has been coupled to quadrupole orthogonal acceleration time-of-flight mass spectrometry. The TIMS analyzer is a segmented rf ion guide wherein ions are mobility-analyzed using an electric field that holds ions stationary against a moving gas, unlike conventional drift tube ion mobility spectrometry where the gas is stationary. Ions are initially trapped, and subsequently eluted from the TIMS analyzer over time according to their mobility (K). Though TIMS has achieved a high level of performance (R > 250) in a small device (<5 cm) using modest operating potentials (<300 V), a proper theory has yet to be produced. Here, we develop a quantitative theory for TIMS via mathematical derivation and simulations. A one-dimensional analytical model, used to predict the transit time and theoretical resolving power, is described. Theoretical trends are in agreement with experimental measurements performed as a function of K, pressure, and the axial electric field scan rate. The linear dependence of the transit time with 1/K provides a fundamental basis for determination of reduced mobility or collision cross section values by calibration. The quantitative description of TIMS provides an operational understanding of the analyzer, outlines the current performance capabilities, and provides insight into future avenues for improvement. Graphical Abstractᅟ


Analyst | 2014

Ion dynamics in a trapped ion mobility spectrometer

Diana Rosa Hernandez; John Daniel DeBord; Mark E. Ridgeway; Desmond Allen Kaplan; Melvin A. Park; Francisco Fernandez-Lima

In the present paper, theoretical simulations and experimental observations are used to describe the ion dynamics in a trapped ion mobility spectrometer. In particular, the ion motion, ion transmission and mobility separation are discussed as a function of the bath gas velocity, radial confinement, analysis time and speed. Mobility analysis and calibration procedure are reported for the case of sphere-like molecules for positive and negative ion modes. Results showed that a maximal mobility resolution can be achieved by optimizing the gas velocity, radial confinement (RF amplitude) and ramp speed (voltage range and ramp time). The mobility resolution scales with the electric field and gas velocity and R = 100-250 can be routinely obtained at room temperature.


Analytical Chemistry | 2014

High Resolution Trapped Ion Mobility Spectrometery of Peptides

Joshua A. Silveira; Mark E. Ridgeway; Melvin A. Park

In the present work, we employ trapped ion mobility spectrometry (TIMS) for conformational analysis of several model peptides. The TIMS distributions are extensively compared to recent ion mobility spectrometry (IMS) studies reported in the literature. At a resolving power (R) exceeding 250, many new features, otherwise hidden by lower resolution IMS analyzers, are revealed. Though still principally limited by the plurality of conformational states, at present, TIMS offers R up to ∼3 to 8 times greater than modern drift tube or traveling wave IMS techniques, respectively. Unlike differential IMS, TIMS not only is able to resolve congested conformational features but also can be used to determine information about their relative size, via the ion-neutral collision cross section, offering a powerful new platform to probe the structure and dynamics of biochemical systems in the gas phase.


Analytical Chemistry | 2016

Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry

Yi Pu; Mark E. Ridgeway; Rebecca S. Glaskin; Melvin A. Park; Catherine E. Costello; Cheng Lin

One of the major challenges in structural characterization of oligosaccharides is the presence of many structural isomers in most naturally occurring glycan mixtures. Although ion mobility spectrometry (IMS) has shown great promise in glycan isomer separation, conventional IMS separation occurs on the millisecond time scale, largely restricting its implementation to fast time-of-flight (TOF) analyzers which often lack the capability to perform electron activated dissociation (ExD) tandem MS analysis and the resolving power needed to resolve isobaric fragments. The recent development of trapped ion mobility spectrometry (TIMS) provides a promising new tool that offers high mobility resolution and compatibility with high-performance Fourier transform ion cyclotron resonance (FTICR) mass spectrometers when operated under the selected accumulation-TIMS (SA-TIMS) mode. Here, we present our initial results on the application of SA-TIMS-ExD-FTICR MS to the separation and identification of glycan linkage isomers.


Analytical Chemistry | 2014

Direct Observation of Differences of Carotenoid Polyene Chain cis/trans Isomers Resulting from Structural Topology

Emily R. Schenk; Vanesa Mendez; John T. Landrum; Mark E. Ridgeway; Melvin A. Park; Francisco Fernandez-Lima

In the present paper, trapped ion mobility spectrometry (TIMS) and theoretical calculations have been used to study carotenoid geometrical motifs generated by photoisomerization from the all-trans geometry. Multiple geometric isomers of the carotenoids lutein and zeaxanthin were separated using TIMS (R > 110) for [M]+, [M + H]+, and [M – 18]+ molecular species. Comparison of observed cross sections with those obtained from molecular dynamics calculations showed that the number of cis double bonds and s-cis single bonds in the polyene chain determine the topology space of the carotenoid. The intensities of IMS signals are correlated with the relative stability of these geometric isomers.1,2 The most stable isomer is the all-trans geometry regardless of the ionization state ([M – 18]+, [M]+, and [M + H]+), and structural stability decreases with the increasing number of cis and/or s-cis bonds in the polyene chain.


Analytical Chemistry | 2015

Targeted High-Resolution Ion Mobility Separation Coupled to Ultrahigh-Resolution Mass Spectrometry of Endocrine Disruptors in Complex Mixtures

Paolo Benigni; Christopher J. Thompson; Mark E. Ridgeway; Melvin A. Park; Francisco Fernandez-Lima

Traditional separation and detection of targeted compounds from complex mixtures from environmental matrices requires the use of lengthy prefractionation steps and high-resolution mass analyzers due to the large number of chemical components and their large structural diversity (highly isomeric). In the present work, selected accumulation trapped ion mobility spectrometry (SA-TIMS) is coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for direct separation and characterization of targeted endocrine-disrupting compounds (EDC) from a complex environmental matrix in a single analysis. In particular, targeted identification based on high-resolution mobility (R ∼ 70-120) and ultrahigh-resolution mass measurements (R > 400 000) of seven commonly targeted EDC and their isobars (e.g., bisphenol A, (Z)- and (E)-diethylstilbestrol, hexestrol, estrone, α-estradiol, and 17-ethynylestradiol) is shown from a complex mixture of water-soluble organic matter (e.g., Suwannee River Fulvic Acid Standard II) complemented with reference standard measurements and theoretical calculations (<3% error).


Journal of the American Society for Mass Spectrometry | 2015

Kinetic Intermediates of Holo- and Apo-Myoglobin Studied Using HDX-TIMS-MS and Molecular Dynamic Simulations

Emily R. Schenk; Raybel Almeida; Jaroslava Miksovska; Mark E. Ridgeway; Melvin A. Park; Francisco Fernandez-Lima

AbstractIn the present work, the kinetic intermediates of holo- and apo-myoglobin were studied by correlating the ion-neutral collision cross section and time resolved H/D back exchange rate simultaneously in a trapped ion mobility spectrometer coupled to a mass spectrometer (HDX-TIMS-MS). The high mobility resolution of the TIMS cell permitted the observation of multiple IMS bands and complementary molecular dynamics simulations resulted in the assignment of candidate structures for each experimental condition studied (e.g., holo [M + 8H]+8–[M + 9H]+9 and apo [M + 9H]+9–[M + 19H]+19). Inspection of the kinetic intermediates suggests that the tertiary structure of apomyoglobin unfolds quickly upon the loss of the Fe protoporphyrin IX that stabilizes the interactions between the A, G, and H helices. In the absence of the porphyrin heme, the apomyoglobin unfolds to Xn kinetic intermediates that vary in the extent of unfolding as a result of the observed charge state. Graphical Abstractᅟ


Analytical Chemistry | 2014

Flavin adenine dinucleotide structural motifs: from solution to gas phase.

Juan Camilo Molano-Arevalo; Diana Rosa Hernandez; Walter G. Gonzalez; Jaroslava Miksovska; Mark E. Ridgeway; Melvin A. Park; Francisco Fernandez-Lima

Flavin adenine dinucleotide (FAD) is involved in important metabolic reactions where the biological function is intrinsically related to changes in conformation. In the present work, FAD conformational changes were studied in solution and in gas phase by measuring the fluorescence decay time and ion-neutral collision cross sections (CCS, in a trapped ion mobility spectrometer, TIMS) as a function of the solvent conditions (i.e., organic content) and gas-phase collisional partner (i.e., N2 doped with organic molecules). Changes in the fluorescence decay suggest that FAD can exist in four conformations in solution, where the abundance of the extended conformations increases with the organic content. TIMS-MS experiments showed that FAD can exist in the gas phase as deprotonated (M = C27H31N9O15P2) and protonated forms (M = C27H33N9O15P2) and that multiple conformations (up to 12) can be observed as a function of the starting solution for the [M + H]+ and [M + Na]+molecular ions. In addition, changes in the relative abundances of the gas-phase structures were observed from a “stack” to a “close” conformation when organic molecules were introduced in the TIMS cell as collision partners. Candidate structures optimized at the DFT/B3LYP/6-31G(d,p) were proposed for each IMS band, and results showed that the most abundant IMS band corresponds to the most stable candidate structure. Solution and gas-phase experiments suggest that the driving force that stabilizes the different conformations is based on the interaction of the adenine and isoalloxazine rings that can be tailored by the “solvation” effect created with the organic molecules.


Analytical Methods | 2014

Fast screening of polycyclic aromatic hydrocarbons using trapped ion mobility spectrometry – mass spectrometry

Anthony Castellanos; Paolo Benigni; Diana Rosa Hernandez; John Daniel DeBord; Mark E. Ridgeway; Melvin A. Park; Francisco Fernandez-Lima

In the present paper, we showed the advantages of trapped ion mobility spectrometry coupled too mass spectrometry (TIMS-MS) combined with theoretical calculations for fast identification (millisecond timescale) of polycyclic aromatic hydrocarbons (PAH) compounds from complex mixtures. Accurate PAH collision cross sections (CCS, in nitrogen as a bath gas) are reported for the most commonly encountered PAH compounds and the ability to separate PAH geometric isomers is shown for three isobaric pairs with mobility resolution exceeding 150 (3-5 times higher than conventional IMS devices). Theoretical candidate structures (optimized at the DFT/B3LYP level) are proposed for the most commonly encountered PAH compounds showing good agreement with the experimental CCS values (<5%). The potential of TIMS-MS for the separation and identification of PAH compounds from complex mixtures without the need of lengthy pre-separation steps is illustrated for the case of a complex soil mixture.


Physical Chemistry Chemical Physics | 2016

Structures of the kinetically trapped i-motif DNA intermediates

Alyssa Garabedian; David Butcher; Jennifer L. Lippens; Jaroslava Miksovska; Prem P. Chapagain; Daniele Fabris; Mark E. Ridgeway; Melvin A. Park; Francisco Fernandez-Lima

In the present work, the conformational dynamics and folding pathways of i-motif DNA were studied in solution and in the gas-phase as a function of the solution pH conditions using circular dichroism (CD), photoacoustic calorimetry analysis (PAC), trapped ion mobility spectrometry-mass spectrometry (TIMS-MS), and molecular dynamics (MD). Solution studies showed at thermodynamic equilibrium the existence of a two-state folding mechanism, whereas during the pH = 7.0 → 4.5 transition a fast and slow phase (ΔHfast + ΔHslow = 43 ± 7 kcal mol-1) with a volume change associated with the formation of hemiprotonated cytosine base pairs and concomitant collapse of the i-motif oligonucleotide into a compact conformation were observed. TIMS-MS experiments showed that gas-phase, kinetically trapped i-motif DNA intermediates produced by nanoESI are preserved, with relative abundances depending on the solution pH conditions. In particular, a folded i-motif DNA structure was observed in nanoESI-TIMS-MS for low charge states in both positive and negative ion mode (e.g., z = ±3 to ±5) at low pH conditions. As solution pH increases, the cytosine neutralization leads to the loss of cytosine-cytosine+ (C·CH+) base pairing in the CCC strands and in those conditions we observe partially unfolded i-motif DNA conformations in nanoESI-TIMS-MS for higher charge states (e.g., z = -6 to -9). Collisional induced activation prior to TIMS-MS showed the existence of multiple local free energy minima, associated with the i-motif DNA unfolding at z = -6 charge state. For the first time, candidate gas-phase structures are proposed based on mobility measurements of the i-motif DNA unfolding pathway. Moreover, the inspection of partially unfolded i-motif DNA structures (z = -7 and z = -8 charge states) showed that the presence of inner cations may or may not induce conformational changes in the gas-phase. For example, incorporation of ammonium adducts does not lead to major conformational changes while sodium adducts may lead to the formation of sodium mediated bonds between two negatively charged sides inducing the stabilization towards more compact structures in new local, free energy minima in the gas-phase.

Collaboration


Dive into the Mark E. Ridgeway's collaboration.

Top Co-Authors

Avatar

Francisco Fernandez-Lima

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Paolo Benigni

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Jaroslava Miksovska

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Alyssa Garabedian

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Diana Rosa Hernandez

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Emily R. Schenk

Florida International University

View shared research outputs
Top Co-Authors

Avatar

John Daniel DeBord

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge