Mark E. Stearns
Fox Chase Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark E. Stearns.
Molecular and Biochemical Parasitology | 1987
Diane W. Taylor; Marcela Parra; George B. Chapman; Mark E. Stearns; Joan Rener; Masamichi Aikawa; Shigehiko Uni; Stephen B. Aley; Lindsey J. Panton; Russell J. Howard
Plasmodium falciparum parasites that induce knobs in the host erythrocyte membrane (K+ phenotype) synthesize a 90 kDa histidine-rich protein (PfHRP-1), whereas knobless variants do not. A monoclonal antibody (mAb 89) to PfHRP-1, in combination with cryo-thin section immunoelectron microscopy, localized the antigen in the parasitophorous vacuolar space and vesicles within the erythrocyte cytosol. Additional immunoelectron microscopic studies showed that PfHRP-1 was also associated with submembranous electron-dense material under knobs and with microfilaments of the host erythrocyte skeletal network. Immunofluorescence and immunoelectron microscopy of intact, non-fixed K+ infected erythrocytes using mAb 89 and a rabbit antiserum raised against purified PfHRP-1, failed to identify any surface exposed epitopes. These antibodies also failed to block cytoadherence of infected erythrocytes to C32 melanoma cells or to affect macrophage phagocytosis of infected erythrocytes.
Cancer Research | 2005
Mark E. Stearns; Jordan Tran; Mary Kay Francis; Hong Zhang; Christian Sell
Mutations in the three closely related RAS genes, HRAS, KRAS, and NRAS are among the most common mutations found in human cancer; reaching 50% in some types of cancer, such as colorectal carcinoma, and 10% in prostate cancers. The activated Ras proteins produced by these mutations can, among other cellular changes, increase vascular endothelial growth factor (VEGF) production. Moreover, tumors bearing RAS gene mutations are more vascular than tumors without RAS mutations. We find that, in prostate epithelial cells, the introduction of an activated HRAS causes cells to produce VEGF in response to insulin-like growth factor I (IGF-I). In comparison, cells lacking an activated Ras are unable to produce VEGF in response to IGF-I. This effect of Ras may occur through stabilization of a second messenger protein, insulin receptor substrate 1, that mediates PI 3-kinase-dependent signaling. Because IGF-I is a paracrine/endocrine hormone that has been associated with increased risk for several types of cancer, these results suggest a novel interrelationship between oncogenic conversion of a cellular gene such as HRAS, and IGF-I produced locally for normal tissue homeostasis.
Experimental Parasitology | 1987
Diane W. Taylor; Marcela Parra; Mark E. Stearns
Following parasitization by Plasmodium falciparum, numerous changes take place in the host erythrocyte membrane. In this study, we used the technique of whole cell mount electron microscopy to determine if the ultrastructure of the erythrocyte cytoskeleton changed following parasitization with knobby and knobless strains of P. falciparum. Using this technique, a network of spectrin filaments (3-10 X 45-120 nm) branching from electron dense junctions (15-25 nm in diameter), the presumed site of bands 4.1 and actin, were visualized. The overall architecture of normal and parasitized erythrocyte cytoskeletons was the same: however, additional patches (35 to 60 nm in size) and aggregates (30 X 150 nm) of electron dense material were present in parasitized skeletons. The ultrastructure of knobby and knobless cytoskeletons was similar, except knobless skeletons usually did not possess the larger aggregates of material. Antigens associated with the erythrocyte cytoskeleton of cells infected with knobby and knobless strains, but not uninfected cells, were demonstrated by indirect immunofluorescence. Results suggest that antigens, associated with the erythrocyte cytoskeleton, may contribute to perturbations in the host erythrocyte membrane.
Cancer Research | 1993
Mark E. Stearns; Min Wang
Cancer Research | 1992
Mark E. Stearns; Min Wang
Journal of Cell Biology | 1988
Mark E. Stearns; Min Wang; Kenneth D. Tew; Lester I. Binder
Journal of Cell Science | 1988
Mark E. Stearns; Kenneth D. Tew
Cancer Research | 1988
Min Wang; Mark E. Stearns
Cancer Research | 1985
Mark E. Stearns; Kenneth D. Tew
Pharmacology & Therapeutics | 1989
Kenneth D. Tew; Mark E. Stearns