Mark E. Watkins
Syracuse University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark E. Watkins.
Mathematical Proceedings of the Cambridge Philosophical Society | 1971
Roberto Frucht; Jack E. Graver; Mark E. Watkins
1. Introduction . For integers n and k with 2 ≤ 2k n , the generalized Petersen graph G(n, k) has been defined in (8) to have vertex-set and edge-set E(G(n, k)) to consist of all edges of the form where i is an integer. All subscripts in this paper are to be read modulo n , where the particular value of n will be clear from the context. Thus G(n, k) is always a trivalent graph of order 2 n , and G (5, 2) is the well known Petersen graph. (The subclass of these graphs with n and k relatively prime was first considered by Coxeter ((2), p. 417ff.).)
Journal of Combinatorial Theory Series B archive | 2005
R. Bruce Richter; Jozef Širáň; Robert Jajcay; Thomas W. Tucker; Mark E. Watkins
We present a theory of Cayley maps, i.e., embeddings of Cayley graphs into oriented surfaces having the same cyclic rotation of generators around each vertex. These maps have often been used to encode symmetric embeddings of graphs. We also present an algebraic theory of Cayley maps and we apply the theory to determine exactly which regular or edge-transitive tilings of the sphere or plane are Cayley maps or Cayley graphs. Our main goal, however, is to provide the general theory so as to make it easier for others to study Cayley maps.
Journal of Combinatorial Theory | 1971
Mark E. Watkins
Abstract Finite groups may be classified as to whether or not they have regular representations as automorphism groups of graphs. Such a classification is begun here for non-Abelian groups (classification of Abelian groups being already in the literature) with a classification of the dihedral groups, the groups of order p 3 for p an odd prime (except for one group of order 27), and the generalized dicyclic groups. It is further shown that the class of groups (other than C 2 ) having the above regular representations is closed under the operation of direct product.
Canadian Journal of Mathematics | 1972
Lewis A. Nowitz; Mark E. Watkins
In this paper, all groups and graphs considered are finite and all graphs are simple (in the sense of Tutte [8, p. 50]). If X is such a graph with vertex set V(X) and automorphism group A(X), we say that X is a graphical regular representation (GRR) of a given abstract group G if (I) G ^ ^ ( Z ) , a n d (II) A(X) acts on V(X) as a regular permutation group; that is, given u, v G V(X), there exists a unique <p £ A (X) for which <p(u) = v. That for any abstract group G there exists a graph X satisfying (I) is well-known (cf. [3]). The question of existence or non-existence of a GRR for a given abstract group G, however, has been settled to date only for relatively few classes of groups. This problem is the underlying motivation for this paper and its sequel. In Section 1 we introduce some essential notation and attempt a summary of what is known to date (with references to the literature) about the foregoing problem. In Section 2 some machinery involving at one time techniques from both group theory and graph theory is developed in order to facilitate proving, when true, that a given graph is indeed a GRR. These techniques are then used to prove the main result of the section:
European Journal of Combinatorics | 1984
Heinz Adolf Jung; Mark E. Watkins
Es werden unendliche Graphen untersucht, die sich durch endliche trennende Mengen in mindestens zwei unendliche Teile zerlegen lassen. Dabei wird insbesondere der Frage nachgegangen, wie sich die Zusammenhangsstruktur und die Struktur der Automorphismengruppe wechselseitig beeinflussen.
Graphs and Combinatorics | 1989
Chris D. Godsil; Wilfried Imrich; Norbert Seifter; Mark E. Watkins; Wolfgang Woess
LetX be a connected locally finite graph with vertex-transitive automorphism group. IfX has polynomial growth then the set of all bounded automorphisms of finite order is a locally finite, periodic normal subgroup ofAUT(X) and the action ofAUT(X) onV(X) is imprimitive ifX is not finite. IfX has infinitely many ends, the group of bounded automorphisms itself is locally finite and periodic.
Journal of Combinatorial Theory | 1986
Mark E. Watkins
Let Γ be an infinite, locally finite, connected simple graph. A one-way (resp. two-way) infinite path of which every finite subpath is a shortest path is called a halfaxis (resp. an axis). The following are proved: (1) Given any vertex x and any end e of Γ, there exists a halfaxis belonging to e which originates at x (thus sharpening a classical resut of D. Konig, in “Theorie der endlichen und unendlichen graphen”, Akad. Verlagsgesellschaft, Leipzig, 1936); (2) every pair of distinct ends of Γ contains a pair of halfaxes whose union is an axis of Γ; (3) if H is a halfaxis and y is a vertex not on H, then some halfaxis originating at y meets H. If Γ is vertex-transitive, we prove: (4) every vertex lies on an axis, and (5) the complement of every axis has no finite component. We investigate vertex-transitive graphs having the following property: if A is an axis and y is a vertex not on A, then there exists an axis through y disjoint from A. Graphs with connectivity equal 1 and having this property are characterized.
Periodica Mathematica Hungarica | 1976
W. Imrich; Mark E. Watkins
LetXG,H denote the Cayley graph of a finite groupG with respect to a subsetH. It is well-known that its automorphism groupA(XG,H) must contain the regular subgroupLG corresponding to the set of left multiplications by elements ofG. This paper is concerned with minimizing the index [A(XG,H)∶LG] for givenG, in particular when this index is always greater than 1. IfG is abelian but not one of seven exceptional groups, then a Cayley graph ofG exists for which this index is at most 2. Nearly complete results for the generalized dicyclic groups are also obtained.
Aequationes Mathematicae | 1973
Mark E. Watkins
DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen, nicht kommerziellen Gebrauch bestimmt. Das Copyright bleibt bei den Herausgebern oder sonstigen Rechteinhabern. Als Nutzer sind Sie sind nicht dazu berechtigt, eine Lizenz zu übertragen, zu transferieren oder an Dritte weiter zu geben. Die Nutzung stellt keine Übertragung des Eigentumsrechts an diesem Dokument dar und gilt vorbehaltlich der folgenden Einschränkungen: Sie müssen auf sämtlichen Kopien dieses Dokuments alle Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen Schutz beibehalten; und Sie dürfen dieses Dokument nicht in irgend einer Weise abändern, noch dürfen Sie dieses Dokument für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen; es sei denn, es liegt Ihnen eine schriftliche Genehmigung von DigiZeitschriften e.V. und vom Herausgeber oder sonstigen Rechteinhaber vor. Mit dem Gebrauch von DigiZeitschriften e.V. und der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.
Monatshefte für Mathematik | 1977
H. A. Jung; Mark E. Watkins
Results byW. Mader and the authors on the connectivity of finite graphs are generalized to include infinite graphs. In the infinite case a distinction must be made concerning the distribution of finite and infinite components with respect to the separating sets. Results are obtained relating these components to the atoms.