Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark F. Haussmann is active.

Publication


Featured researches published by Mark F. Haussmann.


Proceedings of the Royal Society of London B: Biological Sciences | 2003

Telomeres shorten more slowly in long-lived birds and mammals than in short–lived ones

Mark F. Haussmann; David W. Winkler; Kathleen M. O'Reilly; Charles E. Huntington; Ian C. T. Nisbet; Carol M. Vleck

We know very little about physiological constraints on the evolution of life-history traits in general, and, in particular, about physiological and molecular adjustments that accompany the evolution of variation in lifespan. Identifying mechanisms that underlie adaptive variation in lifespan should provide insight into the evolution of trade–offs between lifespan and other life–history traits. Telomeres, the DNA caps at the ends of linear chromosomes, usually shorten as animals age, but whether telomere rate of change is associated with lifespan is unknown. We measured telomere length in erythrocytes from five bird species with markedly different lifespans. Species with shorter lifespans lost more telomeric repeats with age than species with longer lifespans. A similar correlation is seen in mammals. Furthermore, telomeres did not shorten with age in Leachs storm–petrels, an extremely long–lived bird, but actually lengthened. This novel finding suggests that regulation of telomere length is associated not only with cellular replicative lifespan, but also with organismal lifespan, and that very long–lived organisms have escaped entirely any telomeric constraint on cellular replicative lifespan.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length

Mark F. Haussmann; Andrew S Longenecker; Nicole M. Marchetto; Stephen A Juliano; Rachel M. Bowden

Early embryonic exposure to maternal glucocorticoids can broadly impact physiology and behaviour across phylogenetically diverse taxa. The transfer of maternal glucocorticoids to offspring may be an inevitable cost associated with poor environmental conditions, or serve as a maternal effect that alters offspring phenotype in preparation for a stressful environment. Regardless, maternal glucocorticoids are likely to have both costs and benefits that are paid and collected over different developmental time periods. We manipulated yolk corticosterone (cort) in domestic chickens (Gallus domesticus) to examine the potential impacts of embryonic exposure to maternal stress on the juvenile stress response and cellular ageing. Here, we report that juveniles exposed to experimentally increased cort in ovo had a protracted decline in cort during the recovery phase of the stress response. All birds, regardless of treatment group, shifted to oxidative stress during an acute stress response. In addition, embryonic exposure to cort resulted in higher levels of reactive oxygen metabolites and an over-representation of short telomeres compared with the control birds. In many species, individuals with higher levels of oxidative stress and shorter telomeres have the poorest survival prospects. Given this, long-term costs of glucocorticoid-induced phenotypes may include accelerated ageing and increased mortality.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009

Telomere shortening and survival in free-living corvids

H.M. Salomons; Mulder Ga; L. van de Zande; Mark F. Haussmann; Maarten H.K. Linskens; Simon Verhulst

Evidence accumulates that telomere shortening reflects lifestyle and predicts remaining lifespan, but little is known of telomere dynamics and their relation to survival under natural conditions. We present longitudinal telomere data in free-living jackdaws (Corvus monedula) and test hypotheses on telomere shortening and survival. Telomeres in erythrocytes were measured using pulsed-field gel electrophoresis. Telomere shortening rates within individuals were twice as high as the population level slope, demonstrating that individuals with short telomeres are less likely to survive. Further analysis showed that shortening rate in particular predicted survival, because telomere shortening was much accelerated during a birds last year in the colony. Telomere shortening was also faster early in life, even after growth was completed. It was previously shown that the lengths of the shortest telomeres best predict cellular senescence, suggesting that shorter telomeres should be better protected. We test the latter hypothesis and show that, within individuals, long telomeres shorten faster than short telomeres in adults and nestlings, a result not previously shown in vivo. Moreover, survival selection in adults was most conspicuous on relatively long telomeres. In conclusion, our longitudinal data indicate that the shortening rate of long telomeres may be a measure of ‘life stress’ and hence holds promise as a biomarker of remaining lifespan.


Biology Letters | 2005

Longer telomeres associated with higher survival in birds

Mark F. Haussmann; David W. Winkler; Carol M. Vleck

Differences in individual quality and survival within species are a major focus in evolutionary ecology, but we know very little about the underlying physiological mechanisms that determine these differences. Telomere shortening associated with cellular senescence and ageing may be one such mechanism. To date, however, there is little evidence linking telomere length and survival. Here, we show that tree swallows (Tachycineta bicolor) with relatively short telomeres at the age of 1 year have lower survival than tree swallows of the same age with relatively long telomeres. The survival advantage in the long telomere group continues for at least three breeding seasons. It will be important to identify mechanisms that link telomere length with survival early in life.


Oecologia | 2002

Telomere length provides a new technique for aging animals

Mark F. Haussmann; Carol M. Vleck

Field biologists often work with animals for which there is no prior history. A marker of an animals age would offer insight into how age and experience affect reproductive success and other life history parameters. Telomere length shortens with age in cultured cells and mouse and human tissues. We found that lengths of telomere restriction fragments cleaved from blood cell DNA shorten predictably with age in the zebra finch (Taeniopygia guttata). If this relationship holds in other species, it should be possible, once the relationship between telomere length and age has been determined for a given species, to use blood samples to estimate ages of free-living animals. This will allow the incorporation of age into estimates of factors affecting life history parameters in cases where previous histories of animals are unknown.


Experimental Gerontology | 2007

Telomerase activity is maintained throughout the lifespan of long-lived birds.

Mark F. Haussmann; David W. Winkler; Charles E. Huntington; Ian C. T. Nisbet; Carol M. Vleck

Telomerase is an enzyme capable of elongating telomeres, the caps at the ends of chromosomes associated with aging, lifespan and survival. We investigated tissue-level variation in telomerase across different ages in four bird species that vary widely in their life history. Telomerase activity in bone marrow may be associated with the rate of erythrocyte telomere shortening; birds with lower rates of telomere shortening and longer lifespans have higher bone marrow telomerase activity throughout life. Telomerase activity in all of the species appears to be tightly correlated with the proliferative potential of specific organs, and it is also highest in the hatchling age-class, when the proliferative demands of most organs are the highest. This study offers an alternative view to the commonly held hypothesis that telomerase activity is down-regulated in all post-mitotic somatic tissues in long-lived organisms as a tumor-protective mechanism. This highlights the need for more comparative analyses of telomerase, lifespan and the incidence of tumor formation.


Methods in Ecology and Evolution | 2014

Measuring telomere length and telomere dynamics in evolutionary biology and ecology

Daniel H. Nussey; Duncan Martin Baird; Emma L. B. Barrett; Winnie Boner; Jennifer Fairlie; Neil J. Gemmell; Nils Hartmann; Thorsten Horn; Mark F. Haussmann; Mats Olsson; Christopher Turbill; Simon Verhulst; Sandrine Zahn; Pat Monaghan

Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, independent of chronological age. Several different methods have been developed to measure TL, each offering its own technical challenges. The aim of this review is to provide an overview of the advantages and drawbacks of each method for researchers, with a particular focus on issues that are likely to face ecologists and evolutionary biologists collecting samples in the field or in organisms that may never have been studied in this context before. We discuss the key issues to consider and wherever possible try to provide current consensus view regarding best practice with regard to sample collection and storage, DNA extraction and storage, and the five main methods currently available to measure TL. Decisions regarding which tissues to sample, how to store them, how to extract DNA, and which TL measurement method to use cannot be prescribed, and are dependent on the biological question addressed and the constraints imposed by the study system. What is essential for future studies of telomere dynamics in evolution and ecology is that researchers publish full details of their methods and the quality control thresholds they employ.


Oecologia | 2005

Cell-mediated immunosenescence in birds

Mark F. Haussmann; David W. Winkler; Charles E. Huntington; David Vleck; Carrie E. Sanneman; Daniel Hanley; Carol M. Vleck

The phytohaemagglutinin (PHA) skin test response, used to assess cell-mediated immunity, is known to vary with many social and energetic factors, but the effects of age have received little attention. We found that the PHA response of immature birds was lower than those of the youngest breeding adults and were decreased in adults. Whenever possible, age should be included as a covariate when the PHA skin test is used to assess immunocompetence in ecological immunology. The rate of decline in PHA response differed between species and was inversely correlated with survival. The decrease in the PHA response averaged 57% over an average 80% of the maximum life span, but the absolute rate varied with species lifespan such that the short-lived species showed a greater loss per year than the long-lived species. This link between declining immune function and survival may reflect differences in resource partitioning between species, and suggests that selection may act on investment in immune function to influence maximum life span.


Journal of Ornithology | 2007

Avian senescence: underlying mechanisms

Carol M. Vleck; Mark F. Haussmann; David Vleck

Candidate mechanisms for physiological aging include free radical production and resulting oxidative damage, progressive erosion of telomeres and cellular senescence, age-dependent trade-offs in hormone signaling pathways, and immunosenescence, leading to an increased risk of infection, autoimmune disease, and cancer. These mechanisms are inter-related, not mutually exclusive, and probably all contribute to the aging phenotype. To date, most studies on mechanisms of aging are based on cell culture or lab animals, but interest in comparative studies is growing rapidly. Compared to mammals, birds have long life spans for their body sizes. Birds also appear to have lower rates of free radical production and oxidative damage than mammals, despite higher levels of oxidative metabolism. High levels of the antioxidant, uric acid, in birds may help protect against oxidative damage. Cultured bird cells are more resistant to oxidative damage than mammal cells, and membrane phospholipids of birds are less susceptible to peroxidation than those of mammals of the same size, but show a similar susceptibility as those of mammals with the same life span. In birds, telomeres shorten with age, and the rate of shortening is proportional to life span. Telomerase has a higher activity in long-lived than in short-lived species. Within a species, short telomeres correlate with reduced survival. Birds have higher plasma glucose than mammals, but lower levels of protein glycation, which contributes to aging damage. Immunosenescence is linked to both oxidative damage and telomere shortening. Patterns of cellular and humoral immunosenescence differ among species in birds. The rate of decline in cell-mediated immune function is inversely correlated with life span. Comparative studies on mechanisms underlying senescence in birds will continue to provide us with valuable information on how aging mechanisms have evolved.


Molecular Ecology Resources | 2008

TECHNICAL ADVANCES: New strategies for telomere‐based age estimation

Mark F. Haussmann; Robert A. Mauck

Telomere dynamics link molecular and cellular mechanisms with organismal processes and therefore may explain variation in a number of important life‐history traits. Telomere length has been used to estimate age in free‐living populations of animals. Such estimation is a potentially powerful tool in the context of population dynamics and management, as well as the study of life‐history trade‐offs. The number of studies utilizing telomere restriction fragment assays in the fields of ecology and evolution is steadily growing. However, the field lacks methodological and analytical standardization resulting in considerable variation in telomere length and therefore in the usefulness of these techniques. Here, we illustrate new laboratory and analytical methods to reliably measure telomere length from blood erythrocytes and accurately assess the relationship between telomeres and age. We demonstrate the importance of analysing those telomeres most relevant to age‐related studies: the shortest telomeres. We present a reliable method to quickly identify an analysis window (the telomere optimal estimate, TOE) which approaches the optimal window for age estimation. Because the TOE focuses on the shortest telomeres — those telomeres which signal cellular senescence and ageing — TOE can also be used to compare telomeres in age‐matched individuals. We also compare constant‐ and pulsed‐field gel electrophoresis to show how each can influence telomere measurement. The use of TOE should provide powerful telomere‐based age estimation and enable organismal biologists to readily uncover individual and longitudinal differences with regard to telomere dynamics.

Collaboration


Dive into the Mark F. Haussmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. C. Lay

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Alexander S. Kitaysky

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge