Mark Falvey
University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Falvey.
Journal of Hydrometeorology | 2007
Mark Falvey; René D. Garreaud
Central Chile (32°–35°S) is a mountainous and densely populated strip of land between the South American Pacific coast and the main divide of the Andes, 5000 m in height. In this study, wintertime precipitation episodes in central Chile are characterized using precipitation gauge, river discharge, radiosonde, and Special Sensor Microwave Imager (SSM/I) passive microwave radiometer observations over a 10-yr period (1993–2002). Precipitation episodes that typically occur as cold frontal rainstorms move over the region from west to east, within which the cross-mountain flow is blocked at lower levels. The influence of the Andes on the climatological precipitation pattern extends several hundred kilometers upstream of the coast. Over the mainland, the wintertime precipitation is most strongly related to the height of the mean topography surrounding the rain gauge sites, rather than the actual altitudes of the instruments, although higher-elevation locations are not well sampled by available rainfall observations. Between the coast and foothills of the Andes, the precipitation pattern is relatively uniform despite the complex coastal topography. On the western face of the Andes climatological enhancement factors of between 1 and 3 are inferred. Regression analysis against radiosonde data at a coastal site reveals that the precipitation is strongly related to the zonal (cross mountain) moisture flux. The strongest relationship is found when the moisture flux is multiplied by the relative humidity. This variable explains 50% of the variance in daily area average precipitation in central Chile and up to 60% of the variance in the daily precipitation recorded at individual stations. The factors contributing to events of heavy precipitation enhancement in the Andes were examined. Events of heavy, but isolated, precipitation in the Andes tend to occur in the warmer, prefrontal sector of approaching storms and are associated with unusually high moisture fluxes near to and above the crest of the mountain range. Strongly frontal episodes, characterized by widespread rainfall throughout central Chile, lead to variable, but on average rather weak, enhancement in the Andes.
Journal of Geophysical Research | 2009
Lionel Renault; Boris Dewitte; Mark Falvey; René D. Garreaud; Vincent Echevin; Fabrice Bonjean
The coast of central Chile is characterized by intermittent low-level along-shore southerly wind periods, called coastal jets (CJs). In this study, we take advantage of long-term satellite data to document the CJs characteristics over 2000-2007 and investigate its impact on upwelling. The CJ structure has a core some 100 km from the shore and a cross-shore scale of ∼160 km, and it usually lasts for several days (3-10). Its period of occurrence ranges from weekly to a few months. On the basis of covariance analyses between wind stress and sea surface temperature (SST) anomalies, it is found that CJ activity is seasonally phase locked with SST, with a peak season in August-October. The statistically dominant forcing mechanisms of the SST cooling during CJ event is a combination of seaward advection of temperature resulting from Ekman transport, air-sea heat exchange, and Ekman-driven coastal divergence. However, case studies of two events suggest a significant sensitivity of the dominant upwelling forcing mechanisms to the background conditions. For instance, the upward Ekman pumping associated with cyclonic wind stress curl is enhanced for the event with the CJ located more to the south. Although there are limitations associated with both the formulation of the heat budget and the data sets, the results illustrate the complexity of the upwelling forcing mechanisms in this region and the need for realistic high-resolution forcing fluxes. A CJ activity index is also proposed that takes into account the coastal upwelling variability, which can be used for teleconnection studies.
Monthly Weather Review | 2009
Bradford S. Barrett; René D. Garreaud; Mark Falvey
The effects of the Andes Cordillera, the major mountain range in South America, on precipitation patterns of baroclinic systems approaching from the southeast Pacific remain largely unstudied. This study focuses on a case in late May 2008 when an upper-level trough and surface cold front produced widespread precipitation in central Chile. The primary goal was to analyze the physical mechanisms responsible for the structure and evolution of the precipitation. Weather Research and Forecasting (WRF) model simulations indicate that as an upper-level trough approached central Chile, midtropospheric flow below 700 hPa was blocked by the high topography and deflected poleward in the form of a barrier jet. This northerly jet had wind maxima in excess of 15 m s 21 , was centered around 925 hPa, and extended westward 200 km from the mountains. It intersected the cold front, which approached from the south near the coast, thereby increasing convergence along the frontal surface, slowing its equatorward progress, and enhancing rainfall over central Chile. Another separate region of heavy precipitation formed over the upwind slopes of the cordillera. A trajectory analysis confirmed that the barrier jet moved low-level parcels from their origin in the moist southeast Pacific boundary layer to the coast. When model topography was reduced to twenty percent of its original height, the cold front advanced more rapidly to the northeast, generated less precipitation in central Chile between 338 and 368S, and produced minimal orographic precipitation on the upwind Andean slopes. Based on these findings, the high topography appears responsible for not only orographic precipitation but also for substantially increasing precipitation totals over the central coast and valley.
Bulletin of the American Meteorological Society | 2015
Roberto Rondanelli; Alejandra Molina; Mark Falvey
AbstractSolar radiation reaching Earth’s surface is one of the major drivers of climate dynamics. By setting the surface energy balance, downwelling solar radiation indirectly heats the atmosphere and controls the hydrological cycle. Besides its critical importance as a physical mechanism for driving climate and weather, solar radiation has attracted interest as a potentially major source of energy for human activities.For a given latitude, solar radiation at Earth’s surface depends mostly on the composition along the atmospheric path. Since the early twentieth century, major astronomical observatories have led the search for the best places for observation from Earth, which presents a similar problem to the one of finding the maximum of solar radiation at the surface. In particular, Mount Montezuma in the Atacama Desert, Chile, was identified by the pioneers of solar observation as an ideal place to conduct the search for variations of the solar constant estimated from Earth’s surface.By using available ...
Scientific Reports | 2017
Alejandra Molina; Mark Falvey; Roberto Rondanelli
Chile hosts some of the sunniest places on earth, which has led to a growing solar energy industry in recent years. However, the lack of high resolution measurements of solar irradiance becomes a critical obstacle for both financing and design of solar installations. Besides the Atacama Desert, Chile displays a large array of “solar climates” due to large latitude and altitude variations, and so provides a useful testbed for the development of solar irradiance maps. Here a new public database for surface solar irradiance over Chile is presented. This database includes hourly irradiance from 2004 to 2016 at 90 m horizontal resolution over continental Chile. Our results are based on global reanalysis data to force a radiative transfer model for clear sky solar irradiance and an empirical model based on geostationary satellite data for cloudy conditions. The results have been validated using 140 surface solar irradiance stations throughout the country. Model mean percentage error in hourly time series of global horizontal irradiance is only 0.73%, considering both clear and cloudy days. The simplicity and accuracy of the model over a wide range of solar conditions provides confidence that the model can be easily generalized to other regions of the world.
Journal of Applied Meteorology and Climatology | 2013
Ricardo C. Muñoz; Mark Falvey; Marcelo Araya; Martín Jacques-Coper
The near-surface wind and temperature regime at three points in the Atacama Desert of northern Chile is described using two years of multilevel measurements from 80-m towers located in an altitude range between 2100 and 2700m MSL. The data reveal the frequent development of strong nocturnal drainage flows at all sites. Down-valley, nose-shaped wind speed profiles are observed, with maximum values occurring at heights between 20 and 60m AGL. The flow intensity shows considerable interdaily variability and a seasonal modulation of maximum speeds, which in the cold season can attain hourly average values of more than 20 ms 21 . Turbulent mixing appears to be important over the full tower layer, affecting the curvature of the nighttime temperature profile and possibly explaining the observed increase of surface temperatures in the down-valley direction. Nocturnal valley winds and temperatures are weakly controlled by upper-air conditions observed at the nearest aerological station. Estimates of terms in the momentum budget for the development and quasi-stationary phases of the down-valley flows suggest that the pressure gradient force due to the near-surface cooling along the sloping valley axes plays an important role in these drainage flows. A scale for the jet nose height of equilibrium turbulent down-slope jets is proposed that is based on surface friction velocity and surface inversion intensity. At one of the sites, this scale explains about 70% of the caseto-case observed variance of jet nose heights. Further modeling and observations are needed, however, to define better the dynamics, extent, and turbulence structure of this flow system, which has significant windenergy, climatic, and environmental implications.
Journal of Climate | 2016
Ricardo C. Muñoz; Juan Quintana; Mark Falvey; José A. Rutllant; René D. Garreaud
AbstractThe climatology and recent trends of low-level coastal clouds at three sites along the northern Chilean coast (18.3°–23.4°S) are documented based upon up to 45 years of hourly observations of cloud type, coverage, and heights. Consistent with the subtropical location, cloud types are dominated by stratocumuli having greatest coverage (>7 oktas) and smaller heights (600–750 m) during the nighttime of austral winter and spring. Meridionally, nighttime cloud fraction and cloud-base heights increase from south to north. Long-term trends in mean cloud cover are observed at all sites albeit with a seasonal modulation, with increasing (decreasing) coverage in the spring (fall). Consistent trend patterns are also observed in independent sunshine hour measurements at the same sites. Cloud heights show negative trends of about 100 m decade−1 (1995–2010), although the onset time of this tendency differs between sites. The positive cloud fraction trends during the cloudy season reported here disagree with pre...
Bulletin of the American Meteorological Society | 2018
Ricardo C. Muñoz; Mark Falvey; Mario Arancibia; Valentina I. Astudillo; Javier Elgueta; Marcelo Ibarra; Christian Santana; Camila Vásquez
CapsulesA Chilean program to increase the knowledge of winds over the Atacama Desert region is producing a public model and observational database in support of the development of wind energy projects.
Theoretical and Applied Climatology | 2016
Mark Falvey; P. Rojo
The quality of ground-based astronomical observations is significantly affected by local atmospheric conditions, and the search for the best sites has led to the construction of observatories at increasingly remote locations, including recent initiatives on the high plateaus of East Antarctica where the calm, dry, and cloud-free conditions during winter are recognized as amongst the best in the world. Site selection is an important phase of any observatory development project, and candidate sites must be tested in the field with specialized equipment, a process both time consuming and costly. A potential means of screening site locations before embarking on field testing is through the use of regional climate models (RCMs). In this study, we describe the application of the Polar version of the Weather Research and Forecasting (WRF) model to the preliminary site suitability assessment of a hitherto unstudied region in West Antarctica. Numerical simulations with WRF were carried out for the winter (MJJA) of 2011 at 3- and 1-km spatial resolution over a region centered on the Ellsworth mountain range. Comparison with observations of surface wind speed and direction, temperature, and specific humidity at nine automatic weather stations indicates that the model performed well in capturing the mean values and time variability of these variables. Credible features revealed by the model includes zones of high winds over the southernmost part of the Ellsworth Mountains, a deep thermal inversion over the Ronne-Fincher Ice Shelf, and strong west to east moisture gradient across the entire study area. Comparison of simulated cloud fraction with a CALIPSO spacebourne Lidar climatology indicates that the model may underestimate cloud occurrence, a problem that has been noted in previous studies. A simple scoring system was applied to reveal the most promising locations. The results of this study indicate that the WRF model is capable of providing useful guidance during the initial site selection stage of project development.
Anales Del Instituto De La Patagonia | 2012
Mark Falvey
During 2006 the Geophysics Department of the University of Chile conducted a series of high resolution regional climate model (RCM) simulations for Chile’s National Environmental Commission (CONAMA). The study employed a dynamical model (PRECIS) to produce spatially detailed climate projections for Chile under two different emissions scenarios. The results of the simulations were made freely available for use by the scientific community, industry and policy makers. Today the PRECIS database remains an im-portant resource for the analysis of climate change in Chile, especially in areas such as Patagonia where observations are sparse and climate variables such as temperature and precipitation exhibit extremely sharp spatial gradients that are not resolved by global models. In this presentation we provide an overview of the PRECIS project. We begin with a brief discus-sion of the motivation (section 2) and configuration (section 3) for the regional simulations. In section 4 selected PRECIS results are shown focusing on temperature and precipitation predictions in the Magellan region.MOTIVATIONMost current knowledge about how the world’s climate is likely to change as a result of increasing greenhouse gas emissions is based on numerical simulations using global climate models (GCMs). GCMs describe important physical elements and processes in the atmosphere, oceans and land surface that make up the climate system. The conclusions of the latest IPCC Assessment report were based on simulations from over 20 different global models operated by a similar number of scientific agencies worldwide. A major disadvantage of GCMs is their spatial scale, which is typically a few hundred kilo-meters in resolution. In order to study the impacts of climate change, it is necessary to predict changes on much finer scales. One of the techniques for doing so is through the use of Regional Climate Models (RCMs), which have the potential to improve the representation of the climate information used to assess vulnerability to climate change.The need for RCM’s is especially evident in Chile where, due to the sharp differences in eleva-