Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Fitch is active.

Publication


Featured researches published by Mark Fitch.


Cell Metabolism | 2013

SIRT5 Regulates the Mitochondrial Lysine Succinylome and Metabolic Networks

Matthew J. Rardin; Wenjuan He; Yuya Nishida; John C. Newman; Chris Carrico; Steven R. Danielson; Ailan Guo; Philipp Gut; Alexandria K. Sahu; Biao Li; Radha Uppala; Mark Fitch; Timothy Riiff; Lei Zhu; Jing Zhou; Daniel Mulhern; Robert D. Stevens; Olga Ilkayeva; Christopher B. Newgard; Matthew P. Jacobson; Marc K. Hellerstein; Eric S. Goetzman; Bradford W. Gibson; Eric Verdin

Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1,190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5(-/-) animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2.


Science Translational Medicine | 2015

Type 1 diabetes immunotherapy using polyclonal regulatory T cells

Jeffrey A. Bluestone; Jane H. Buckner; Mark Fitch; Stephen E. Gitelman; Shipra Gupta; Marc K. Hellerstein; Kevan C. Herold; Angela Lares; Michael R. Lee; Kelvin Li; Weihong Liu; S. Alice Long; Lisa M. Masiello; Vinh Nguyen; Amy L. Putnam; Mary Rieck; Peter Sayre; Qizhi Tang

Autologous regulatory T cells can be expanded and are well tolerated in patients with recent-onset type 1 diabetes. Regulating type 1 diabetes In patients with type 1 diabetes (T1D), immune cells attack the insulin-producing β cells of the pancreas. The resulting prolonged increase in blood sugar levels can lead to serious complications including heart disease and kidney failure. Regulatory T cells (Tregs) have been shown to be defective in autoimmune diseases. Now, Bluestone et al. report a phase 1 trial of adoptive Treg immunotherapy to repair or replace Tregs in type 1 diabetics. The ex vivo–expanded polyclonal Tregs were long-lived after transfer and retained a broad Treg phenotype long-term. Moreover, the therapy was safe, supporting efficacy testing in further trials. Type 1 diabetes (T1D) is an autoimmune disease that occurs in genetically susceptible individuals. Regulatory T cells (Tregs) have been shown to be defective in the autoimmune disease setting. Thus, efforts to repair or replace Tregs in T1D may reverse autoimmunity and protect the remaining insulin-producing β cells. On the basis of this premise, a robust technique has been developed to isolate and expand Tregs from patients with T1D. The expanded Tregs retained their T cell receptor diversity and demonstrated enhanced functional activity. We report on a phase 1 trial to assess safety of Treg adoptive immunotherapy in T1D. Fourteen adult subjects with T1D, in four dosing cohorts, received ex vivo–expanded autologous CD4+CD127lo/−CD25+ polyclonal Tregs (0.05 × 108 to 26 × 108 cells). A subset of the adoptively transferred Tregs was long-lived, with up to 25% of the peak level remaining in the circulation at 1 year after transfer. Immune studies showed transient increases in Tregs in recipients and retained a broad Treg FOXP3+CD4+CD25hiCD127lo phenotype long-term. There were no infusion reactions or cell therapy–related high-grade adverse events. C-peptide levels persisted out to 2+ years after transfer in several individuals. These results support the development of a phase 2 trial to test efficacy of the Treg therapy.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1997

Glucose and glutamine provide similar proportions of energy to mucosal cells of rat small intestine

Sharon E. Fleming; Kirsten L. Zambell; Mark Fitch

The objectives of this study were to establish a reliable method for quantifying glycolytic flux in intestinal epithelial cells, to determine the proportion of energy provided to small intestine epithelial cells by glucose vs. glutamine, and to determine whether there was an energetic advantage to having both substrates present simultaneously. There was substantial retention of 3H in alanine and lactate when [2-(3)H]glucose was used as tracer for quantifying glycolysis, and the magnitude of the 3H retention was influenced by the presence of other substrates and metabolites. Detritiation was at least 99% complete, however, when [3-(3)H]glucose was used as tracer in this system and the tritium was recovered as 3H2O. Glycolytic flux was six- to sevenfold higher in cells of the proximal than distal small intestine but was not significantly different for young adult (4 mo) vs. aged adult (24 mo) rats. Net ATP production from exogenous substrates was higher when both glucose and glutamine were present simultaneously than when either substrate was present alone, and glucose was calculated to provide 50-60% of the net ATP produced from these two substrates. Most of the energy produced from glucose was produced via the anaerobic metabolic pathways (78% for glucose alone, 95% with glucose and glutamine). Net energy production was calculated to be 10% lower in cells from aged animals than in those from young animals, since CO2 production from these major substrates was lower in cells from aged animals.The objectives of this study were to establish a reliable method for quantifying glycolytic flux in intestinal epithelial cells, to determine the proportion of energy provided to small intestine epithelial cells by glucose vs. glutamine, and to determine whether there was an energetic advantage to having both substrates present simultaneously. There was substantial retention of 3H in alanine and lactate when [2-3H]glucose was used as tracer for quantifying glycolysis, and the magnitude of the3H retention was influenced by the presence of other substrates and metabolites. Detritiation was at least 99% complete, however, when [3-3H]glucose was used as tracer in this system and the tritium was recovered as3H2O. Glycolytic flux was six- to sevenfold higher in cells of the proximal than distal small intestine but was not significantly different for young adult (4 mo) vs. aged adult (24 mo) rats. Net ATP production from exogenous substrates was higher when both glucose and glutamine were present simultaneously than when either substrate was present alone, and glucose was calculated to provide 50-60% of the net ATP produced from these two substrates. Most of the energy produced from glucose was produced via the anaerobic metabolic pathways (78% for glucose alone, 95% with glucose and glutamine). Net energy production was calculated to be 10% lower in cells from aged animals than in those from young animals, since CO2 production from these major substrates was lower in cells from aged animals.


Nature | 2017

Origin and differentiation of human memory CD8 T cells after vaccination

Rama Akondy; Mark Fitch; Srilatha Edupuganti; Shu Yang; Haydn T. Kissick; Kelvin Li; Ben Youngblood; Hossam A. Abdelsamed; Donald J. McGuire; Kristen W. Cohen; Gabriela Alexe; Shashi Nagar; Megan McCausland; Satish Gupta; Pramila Tata; W. Nicholas Haining; M. Juliana McElrath; David D. Zhang; Bin Hu; William J. Greenleaf; Jörg J. Goronzy; Mark Mulligan; Marc K. Hellerstein; Rafi Ahmed

The differentiation of human memory CD8 T cells is not well understood. Here we address this issue using the live yellow fever virus (YFV) vaccine, which induces long-term immunity in humans. We used in vivo deuterium labelling to mark CD8 T cells that proliferated in response to the virus and then assessed cellular turnover and longevity by quantifying deuterium dilution kinetics in YFV-specific CD8 T cells using mass spectrometry. This longitudinal analysis showed that the memory pool originates from CD8 T cells that divided extensively during the first two weeks after infection and is maintained by quiescent cells that divide less than once every year (doubling time of over 450 days). Although these long-lived YFV-specific memory CD8 T cells did not express effector molecules, their epigenetic landscape resembled that of effector CD8 T cells. This open chromatin profile at effector genes was maintained in memory CD8 T cells isolated even a decade after vaccination, indicating that these cells retain an epigenetic fingerprint of their effector history and remain poised to respond rapidly upon re-exposure to the pathogen.


Obesity | 2008

Baseline Correlates of Insulin Resistance in Inner City High‐BMI African‐American Children

Aarthi Raman; Mark Fitch; Mark Hudes; Robert H. Lustig; Carolyn B. Murray; Joanne P. Ikeda; Sharon E. Fleming

To characterize the influence of diet‐, physical activity–, and self‐esteem‐related factors on insulin resistance in 8–10‐year‐old African‐American (AA) children with BMI greater than the 85th percentile who were screened to participate in a community‐based type 2 diabetes mellitus (T2DM) prevention trial. In 165 subjects, fasting glucose‐ and insulin‐derived values for homeostasis model assessment of insulin resistance (HOMA‐IR) assessed insulin resistance. Body fatness was calculated following bioelectrical impedance analysis, and fitness was measured using laps from a 20‐m shuttle run. Child questionnaires assessed physical activity, dietary habits, and self‐esteem. Pubertal staging was assessed using serum levels of sex hormones. Parent questionnaires assessed family demographics, family health, and family food and physical activity habits. Girls had significantly higher percent body fat but similar anthropometric measures compared with boys, whereas boys spent more time in high‐intensity activities than girls. Scores for self‐perceived behavior were higher for girls than for boys; and girls desired a more slender body. Girls had significantly higher insulin resistance (HOMA‐IR), compared with boys (P < 0.01). Adjusting for age, sex, pubertal stage, socioeconomic index (SE index), and family history of diabetes, multivariate regression analysis showed that children with higher waist circumference (WC) (P < 0.001) and lower Harters scholastic competence (SC) scale (P = 0.044) had higher insulin resistance. WC and selected self‐esteem parameters predicted insulin resistance in high‐BMI AA children. The risk of T2DM may be reduced in these children by targeting these factors.


Aging Cell | 2015

Eicosapentaenoic acid but not docosahexaenoic acid restores skeletal muscle mitochondrial oxidative capacity in old mice

Matthew L. Johnson; Antigoni Z. Lalia; Surendra Dasari; Maximilian Pallauf; Mark Fitch; Marc K. Hellerstein; Ian R. Lanza

Mitochondrial dysfunction is often observed in aging skeletal muscle and is implicated in age‐related declines in physical function. Early evidence suggests that dietary omega‐3 polyunsaturated fatty acids (n‐3 PUFAs) improve mitochondrial function. Here, we show that 10 weeks of dietary eicosapentaenoic acid (EPA) supplementation partially attenuated the age‐related decline in mitochondrial function in mice, but this effect was not observed with docosahexaenoic acid (DHA). The improvement in mitochondrial function with EPA occurred in the absence of any changes in mitochondrial abundance or biogenesis, which was evaluated from RNA sequencing, large‐scale proteomics, and direct measurements of muscle mitochondrial protein synthesis rates. We find that EPA improves muscle protein quality, specifically by decreasing mitochondrial protein carbamylation, a post‐translational modification that is driven by inflammation. These results demonstrate that EPA attenuated the age‐related loss of mitochondrial function and improved mitochondrial protein quality through a mechanism that is likely linked with anti‐inflammatory properties of n‐3 PUFAs. Furthermore, we demonstrate that EPA and DHA exert some common biological effects (anticoagulation, anti‐inflammatory, reduced FXR/RXR activation), but also exhibit many distinct biological effects, a finding that underscores the importance of evaluating the therapeutic potential of individual n‐3 PUFAs.


Diabetes | 2012

In Vivo Adipogenesis in Rats Measured by Cell Kinetics in Adipocytes and Plastic-Adherent Stroma-Vascular Cells in Response to High-Fat Diet and Thiazolidinedione

Yourka D. Tchoukalova; Mark Fitch; Pamela M. Rogers; Jeffrey D. Covington; Tara M. Henagan; Jianping Ye; Marc K. Hellerstein; Eric Ravussin

Impairment of adipogenesis contributes to the development of obesity-related insulin resistance. The current in vitro approaches for its assessment represent crude estimates of the adipogenic potential because of the disruption of the in vivo microenvironment. A novel assessment of in vivo adipogenesis using the incorporation of the stable isotope deuterium (2H) into the DNA of isolated adipocytes and stroma-vascular fraction from adipose tissue has been developed. In the current study, we have refined this technique by purifying the adipocytes via a negative immune selection and sorting the plastic adherent stroma-vascular (aSV) subfraction (using 3 h culture) that contains mostly adipocyte progenitor cells and ∼10% of small adipocytes. Using a 3-week 8% 2H2O ingestion with a high-fat diet (HFD) or HFD plus pioglitazone (HFD-P), we demonstrate that the fractions of new aSV cells (faSV) and immunopurified adipocytes (fAD) (the ratio of their 2H-enrichment of DNA to the maximal 2H-enrichment of DNA of bone marrow reference cells) recapitulate the known hyperplastic mechanism of weight gain with pioglitazone treatment. We conclude that faSV and fAD are reliable indices of in vivo adipogenesis. The proposed method represents a valuable tool for studying the effect of interventions (drugs, diets, and exercise) on in vivo adipogenesis.


American Journal of Transplantation | 2017

Polyclonal Regulatory T cell Therapy for Control of Inflammation in Kidney Transplants

Sindhu Chandran; Qizhi Tang; Minnie M. Sarwal; Zoltan Laszik; Amy L. Putnam; Karim Lee; Joey Leung; Vinh Nguyen; Tara K. Sigdel; Erica Tavares; Joshua Y. C. Yang; Marc K. Hellerstein; Mark Fitch; Jeffrey A. Bluestone; Flavio Vincenti

Early subclinical inflammation in kidney transplants is associated with later graft fibrosis and dysfunction. Regulatory T cells (Tregs) can reverse established inflammation in animal models. We conducted a pilot safety and feasibility trial of autologous Treg cell therapy in three kidney transplant recipients with subclinical inflammation noted on 6‐month surveillance biopsies. Tregs were purified from peripheral blood and polyclonally expanded ex vivo using medium containing deuterated glucose to label the cells. All patients received a single infusion of ~320 × 106 (319, 321, and 363.8 × 106) expanded Tregs. Persistence of the infused Tregs was tracked. Graft inflammation was monitored with follow‐up biopsies and urinary biomarkers. Nearly 1 × 109 (0.932, 0.956, 1.565 × 109) Tregs were successfully manufactured for each patient. There were no infusion reactions or serious therapy‐related adverse events. The infused cells demonstrated patterns of persistence and stability similar to those observed in non‐immunosuppressed subjects receiving the same dose of Tregs. Isolation and expansion of Tregs is feasible in kidney transplant patients on immunosuppression. Infusion of these cells was safe and well tolerated. Future trials will test the efficacy of polyclonal and donor alloantigen‐reactive Tregs for the treatment of inflammation in kidney transplants.


American Journal of Physiology-endocrinology and Metabolism | 2013

Large increases in adipose triacylglycerol flux in Cushingoid CRH-Tg mice are explained by futile cycling

Charles Harris; Donald J. Roohk; Mark Fitch; Benjamin M. Boudignon; Bernard P. Halloran; Marc K. Hellerstein

Glucocorticoids are extremely effective anti-inflammatory therapies, but their clinical use is limited due to severe side effects, including osteoporosis, muscle wasting, fat redistribution, and skin thinning. Here we use heavy water labeling and mass spectrometry to measure fluxes through metabolic pathways impacted by glucocorticoids. We combine these methods with measurements of body composition in corticotropin-releasing hormone (CRH)-transgenic (Tg)(+) mice that have chronically elevated, endogenously produced corticosterone and a phenotype that closely mimics Cushings disease in humans. CRH-Tg(+) mice had increased adipose mass, adipose triglyceride synthesis, and greatly increased triglyceride/fatty acid cycling in subcutaneous and abdominal fat depots and increased de novo lipogenesis in the abdominal depot. In bone, CRH-Tg(+) mice had decreased bone mass, absolute collagen synthesis rates, and collagen breakdown rate. In skin, CRH-Tg(+) mice had decreased skin thickness and absolute collagen synthesis rates but no decrease in the collagen breakdown rate. In muscle, CRH-Tg(+) mice had decreased muscle mass and absolute protein synthesis but no decrease in the protein breakdown rate. We conclude that chronic exposure to endogenous glucocorticoid excess in mice is associated with ongoing decreases in bone collagen, skin collagen, and muscle protein synthesis without compensatory reduction (coupling) of breakdown rates in skin and muscle. Both of these actions contribute to reduced protein pool sizes. We also conclude that increased cycling between triglycerides and free fatty acids occurs in both abdominal and subcutaneous fat depots in CRH-Tg(+) mice. CRH-Tg mice have both increased lipolysis and increased triglyceride synthesis in adipose tissue.


Journal of Pediatric Endocrinology and Metabolism | 2010

Insulin Resistance is Improved in Overweight African American Boys but Not in Girls Following a One-Year Multidisciplinary Community Intervention Program

Aarthi Raman; Lorrene D. Ritchie; Robert H. Lustig; Mark Fitch; Mark Hudes; Sharon E. Fleming

AIM To assess potential for effectiveness, in a non-randomized pilot study, of a community-based lifestyle intervention program to reduce the risk for type 2 diabetes mellitus in overweight African American (AA) children. RESEARCH DESIGN Sample of 165 9-11 year-old AA children with body mass index (BMI) >85th percentile were recruited from local recreational sites, schools and churches. Participants self-selected to attend one of two study sites, blinded to the specifics of the intervention administered at each site. The intervention group received a programmatically focused 2-week summer camp with once-a-week community-based exercise, nutrition, and behavioral modification sessions, and their families were invited to monthly nutrition educational sessions. Control group participants received a 2-week conventional YMCA summer camp and their families received nutrition and physical activity education material through the mail. Baseline assessment and 1-year follow-up were conducted in collaboration with the YMCA of the East Bay and Childrens Hospital Oakland, CA, with 109 participants (66%) having pre/post data. RESULTS After one-year of intervention, treatment boys showed a drop in homeostasis model assessment of insulin-resistance (HOMA-IR) (-0.58 vs +0.17; p = 0.003), fasting glucose (Gf, mg/dL) (mean change: -2.9 vs +0.4; p = 0.126) and fasting insulin (If, microU/mL) (-2.2 vs +0.7; p = 0.009) compared to control boys, after accounting for baseline differences and pubertal stage of the child. Treatment girls had similar changes to the control girls in HOMA-IR (-0.02 vs -0.17; p = 0.66), Gr (-0.3 vs +1.4; p = 0.29) and If (+0.03 vs +0.17; p = 0.57). CONCLUSION After one year, this community-based intervention program effectively improved insulin resistance and thus reduced risk for type 2 diabetes mellitus in overweight AA boys but did not change the risk in girls compared to control children.

Collaboration


Dive into the Mark Fitch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Hudes

University of California

View shared research outputs
Top Co-Authors

Avatar

Aarthi Raman

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric Ravussin

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Kelvin Li

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robbie A. Beyl

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula A. White

Pennington Biomedical Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge