Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelvin Li is active.

Publication


Featured researches published by Kelvin Li.


PLOS Biology | 2007

The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific

Douglas B. Rusch; Aaron L. Halpern; Granger Sutton; Karla B. Heidelberg; Shannon J. Williamson; Shibu Yooseph; Dongying Wu; Jonathan A. Eisen; Jeff Hoffman; Karin A. Remington; Karen Beeson; Bao Duc Tran; Hamilton O. Smith; Holly Baden-Tillson; Clare Stewart; Joyce Thorpe; Jason Freeman; Cynthia Andrews-Pfannkoch; Joseph E. Venter; Kelvin Li; Saul Kravitz; John F. Heidelberg; Terry Utterback; Yu-Hui Rogers; Luisa I. Falcón; Valeria Souza; Germán Bonilla-Rosso; Luis E. Eguiarte; David M. Karl; Shubha Sathyendranath

The worlds oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed “fragment recruitment,” addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed “extreme assembly,” made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS.


Nature | 2012

Antibiotics in early life alter the murine colonic microbiome and adiposity

Ilseung Cho; Shingo Yamanishi; Laura M. Cox; Barbara A. Methé; Jiri Zavadil; Kelvin Li; Zhan Gao; Douglas Mahana; Kartik Raju; Isabel Teitler; Huilin Li; Alexander V. Alekseyenko; Martin J. Blaser

Antibiotics administered in low doses have been widely used as growth promoters in the agricultural industry since the 1950s, yet the mechanisms for this effect are unclear. Because antimicrobial agents of different classes and varying activity are effective across several vertebrate species, we proposed that such subtherapeutic administration alters the population structure of the gut microbiome as well as its metabolic capabilities. We generated a model of adiposity by giving subtherapeutic antibiotic therapy to young mice and evaluated changes in the composition and capabilities of the gut microbiome. Administration of subtherapeutic antibiotic therapy increased adiposity in young mice and increased hormone levels related to metabolism. We observed substantial taxonomic changes in the microbiome, changes in copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids, increases in colonic short-chain fatty acid levels, and alterations in the regulation of hepatic metabolism of lipids and cholesterol. In this model, we demonstrate the alteration of early-life murine metabolic homeostasis through antibiotic manipulation.


PLOS ONE | 2012

Evaluation of 16s rDNA-based community profiling for human microbiome research

Doyle V. Ward; Dirk Gevers; Georgia Giannoukos; Ashlee M. Earl; Barbara A. Methé; Erica Sodergren; Michael Feldgarden; Dawn Ciulla; Diana Tabbaa; Cesar Arze; Elizabeth L. Appelbaum; Leigh Aird; Scott Anderson; Tulin Ayvaz; Edward A. Belter; Monika Bihan; Toby Bloom; Jonathan Crabtree; Laura Courtney; Lynn K. Carmichael; David J. Dooling; Rachel L. Erlich; Candace N. Farmer; Lucinda Fulton; Robert S. Fulton; Hongyu Gao; John Gill; Brian J. Haas; Lisa Hemphill; Otis Hall

The Human Microbiome Project will establish a reference data set for analysis of the microbiome of healthy adults by surveying multiple body sites from 300 people and generating data from over 12,000 samples. To characterize these samples, the participating sequencing centers evaluated and adopted 16S rDNA community profiling protocols for ABI 3730 and 454 FLX Titanium sequencing. In the course of establishing protocols, we examined the performance and error characteristics of each technology, and the relationship of sequence error to the utility of 16S rDNA regions for classification- and OTU-based analysis of community structure. The data production protocols used for this work are those used by the participating centers to produce 16S rDNA sequence for the Human Microbiome Project. Thus, these results can be informative for interpreting the large body of clinical 16S rDNA data produced for this project.


PLOS Pathogens | 2010

Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.

Lance D. Eckerle; Michelle M. Becker; Rebecca A. Halpin; Kelvin Li; Eli Venter; Xiaotao Lu; Sana Scherbakova; Rachel L. Graham; Ralph S. Baric; Timothy B. Stockwell; David J. Spiro; Mark R. Denison

Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution.


PLOS ONE | 2012

Analyses of the Microbial Diversity across the Human Microbiome

Kelvin Li; Monika Bihan; Shibu Yooseph; Barbara A. Methé

Analysis of human body microbial diversity is fundamental to understanding community structure, biology and ecology. The National Institutes of Health Human Microbiome Project (HMP) has provided an unprecedented opportunity to examine microbial diversity within and across body habitats and individuals through pyrosequencing-based profiling of 16 S rRNA gene sequences (16 S) from habits of the oral, skin, distal gut, and vaginal body regions from over 200 healthy individuals enabling the application of statistical techniques. In this study, two approaches were applied to elucidate the nature and extent of human microbiome diversity. First, bootstrap and parametric curve fitting techniques were evaluated to estimate the maximum number of unique taxa, Smax, and taxa discovery rate for habitats across individuals. Next, our results demonstrated that the variation of diversity within low abundant taxa across habitats and individuals was not sufficiently quantified with standard ecological diversity indices. This impact from low abundant taxa motivated us to introduce a novel rank-based diversity measure, the Tail statistic, (“τ”), based on the standard deviation of the rank abundance curve if made symmetric by reflection around the most abundant taxon. Due to τ’s greater sensitivity to low abundant taxa, its application to diversity estimation of taxonomic units using taxonomic dependent and independent methods revealed a greater range of values recovered between individuals versus body habitats, and different patterns of diversity within habitats. The greatest range of τ values within and across individuals was found in stool, which also exhibited the most undiscovered taxa. Oral and skin habitats revealed variable diversity patterns, while vaginal habitats were consistently the least diverse. Collectively, these results demonstrate the importance, and motivate the introduction, of several visualization and analysis methods tuned specifically for next-generation sequence data, further revealing that low abundant taxa serve as an important reservoir of genetic diversity in the human microbiome.


Mbio | 2013

Community differentiation of the cutaneous microbiota in psoriasis

Alexander V. Alekseyenko; Guillermo I. Perez-Perez; Aieska De Souza; Bruce E. Strober; Zhan Gao; Monika Bihan; Kelvin Li; Barbara A. Methé; Martin J. Blaser

BackgroundPsoriasis is a common chronic inflammatory disease of the skin. We sought to characterize and compare the cutaneous microbiota of psoriatic lesions (lesion group), unaffected contralateral skin from psoriatic patients (unaffected group), and similar skin loci in matched healthy controls (control group) in order to discern patterns that govern skin colonization and their relationship to clinical diagnosis.ResultsUsing high-throughput 16S rRNA gene sequencing, we assayed the cutaneous bacterial communities of 51 matched triplets and characterized these samples using community data analysis techniques. Intragroup Unifrac β diversity revealed increasing diversity from control to unaffected to lesion specimens. Likewise, principal coordinates analysis (PCoA) revealed separation of the lesion samples from unaffected and control along the first axis, suggesting that psoriasis is a major contributor to the observed diversity. The taxonomic richness and evenness decreased in both lesion and unaffected communities compared to control. These differences are explained by the combined increased abundance of the four major skin-associated genera (Corynebacterium, Propionibacterium, Staphylococcus, and Streptococcus), which present a potentially useful predictor for clinical skin type. Psoriasis samples also showed significant univariate decreases in relative abundances and strong classification performance of Cupriavidus, Flavisolibacter, Methylobacterium, and Schlegelella genera versus controls. The cutaneous microbiota separated into two distinct clusters, which we call cutaneotypes: (1) Proteobacteria-associated microbiota, and (2) Firmicutes-associated and Actinobacteria-associated microbiota. Cutaneotype 2 is enriched in lesion specimens compared to control (odds ratio 3.52 (95% CI 1.44 to 8.98), P <0.01).ConclusionsOur results indicate that psoriasis induces physiological changes both at the lesion site and at the systemic level, which select for specific differential microbiota among the assayed clinical skin types. These differences in microbial community structure in psoriasis patients are potentially of pathophysiologic and diagnostic significance.


Science | 2015

Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor

Fumio Inagaki; Kai-Uwe Hinrichs; Yusuke Kubo; Marshall W Bowles; Verena B Heuer; W L Hong; Tatsuhiko Hoshino; Akira Ijiri; Hiroyuki Imachi; Motoo Ito; Masanori Kaneko; Mark A. Lever; Yu-Shih Lin; Barbara A. Methé; Sumito Morita; Yuki Morono; Wataru Tanikawa; M Bihan; Stephen A. Bowden; Marcus Elvert; Clemens Glombitza; D Gross; Guy J. Harrington; Tomoyuki Hori; Kelvin Li; D Limmer; C H Liu; Masafumi Murayama; Naohiko Ohkouchi; Shuhei Ono

A deep sleep in coal beds Deep below the ocean floor, microorganisms from forest soils continue to thrive. Inagaki et al. analyzed the microbial communities in several drill cores off the coast of Japan, some sampling more than 2 km below the seafloor (see the Perspective by Huber). Although cell counts decreased with depth, deep coal beds harbored active communities of methanogenic bacteria. These communities were more similar to those found in forest soils than in other deep marine sediments. Science, this issue p. 420; see also p. 376 Coal beds more than 2 kilometers below the seafloor host methanogenic bacteria related to those found in forest soils. [Also see Perspective by Huber] Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~104 cells cm−3. Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.


PLOS ONE | 2013

Analyses of the stability and core taxonomic memberships of the human microbiome.

Kelvin Li; Monika Bihan; Barbara A. Methé

Analyses of the taxonomic diversity associated with the human microbiome continue to be an area of great importance. The study of the nature and extent of the commonly shared taxa (“core”), versus those less prevalent, establishes a baseline for comparing healthy and diseased groups by quantifying the variation among people, across body habitats and over time. The National Institutes of Health (NIH) sponsored Human Microbiome Project (HMP) has provided an unprecedented opportunity to examine and better define what constitutes the taxonomic core within and across body habitats and individuals through pyrosequencing-based profiling of 16S rRNA gene sequences from oral, skin, distal gut (stool), and vaginal body habitats from over 200 healthy individuals. A two-parameter model is introduced to quantitatively identify the core taxonomic members of each body habitat’s microbiota across the healthy cohort. Using only cutoffs for taxonomic ubiquity and abundance, core taxonomic members were identified for each of the 18 body habitats and also for the 4 higher-level body regions. Although many microbes were shared at low abundance, they exhibited a relatively continuous spread in both their abundance and ubiquity, as opposed to a more discretized separation. The numbers of core taxa members in the body regions are comparatively small and stable, reflecting the relatively high, but conserved, interpersonal variability within the cohort. Core sizes increased across the body regions in the order of: vagina, skin, stool, and oral cavity. A number of “minor” oral taxonomic core were also identified by their majority presence across the cohort, but with relatively low and stable abundances. A method for quantifying the difference between two cohorts was introduced and applied to samples collected on a second visit, revealing that over time, the oral, skin, and stool body regions tended to be more transient in their taxonomic structure than the vaginal body region.


Bioinformatics | 2010

METAREP: JCVI metagenomics reports—an open source tool for high-performance comparative metagenomics

Johannes Goll; Douglas B. Rusch; David M. Tanenbaum; Mathangi Thiagarajan; Kelvin Li; Barbara A. Methé; Shibu Yooseph

Summary: JCVI Metagenomics Reports (METAREP) is a Web 2.0 application designed to help scientists analyze and compare annotated metagenomics datasets. It utilizes Solr/Lucene, a high-performance scalable search engine, to quickly query large data collections. Furthermore, users can use its SQL-like query syntax to filter and refine datasets. METAREP provides graphical summaries for top taxonomic and functional classifications as well as a GO, NCBI Taxonomy and KEGG Pathway Browser. Users can compare absolute and relative counts of multiple datasets at various functional and taxonomic levels. Advanced comparative features comprise statistical tests as well as multidimensional scaling, heatmap and hierarchical clustering plots. Summaries can be exported as tab-delimited files, publication quality plots in PDF format. A data management layer allows collaborative data analysis and result sharing. Availability: Web site http://www.jcvi.org/metarep; source code http://github.com/jcvi/METAREP Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Analytical Biochemistry | 2012

Measurement of human plasma proteome dynamics with 2H2O and liquid chromatography tandem mass spectrometry

John C. Price; William E. Holmes; Kelvin Li; Nicholas A. Floreani; Richard A. Neese; Scott M. Turner; Marc K. Hellerstein

Dysfunction of protein turnover is a feature of many human diseases, and proteins are substrates in important biological processes. Currently, no method exists for the measurement of global protein turnover (i.e., proteome dynamics) that can be applied in humans. Here we describe the use of metabolic labeling with deuterium ((2)H) from (2)H(2)O and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of mass isotopomer patterns to measure protein turnover. We show that the positions available for (2)H label incorporation in vivo can be calculated using peptide sequence. The isotopic incorporation values calculated by combinatorial analysis of mass isotopomer patterns in peptides correlate very closely with values established for individual amino acids. Inpatient and outpatient heavy water labeling protocols resulted in (2)H label incorporation sufficient for reproducible quantitation in humans. Replacement rates were similar for peptides deriving from the same protein. Using a kinetic model to account for the time course of each individuals (2)H(2)O enrichment curves, dynamics of approximately 100 proteins with half-lives ranging from 0.4 to 40 days were measured using 8 μl of plasma. The measured rates were consistent with literature values. This method can be used to measure in vivo proteome homeostasis in humans in disease and during therapeutic interventions.

Collaboration


Dive into the Kelvin Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Emson

University of California

View shared research outputs
Top Co-Authors

Avatar

Monika Bihan

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Eric Lawitz

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Price

Brigham Young University

View shared research outputs
Researchain Logo
Decentralizing Knowledge