Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark G. Hinds is active.

Publication


Featured researches published by Mark G. Hinds.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structural insights into the degradation of Mcl-1 induced by BH3 domains

Peter E. Czabotar; Erinna F. Lee; Mark F. van Delft; Catherine L. Day; Brian J. Smith; David C. S. Huang; W. Douglas Fairlie; Mark G. Hinds; Peter M. Colman

Apoptosis is held in check by prosurvival proteins of the Bcl-2 family. The distantly related BH3-only proteins bind to and antagonize them, thereby promoting apoptosis. Whereas binding of the BH3-only protein Noxa to prosurvival Mcl-1 induces Mcl-1 degradation by the proteasome, binding of another BH3-only ligand, Bim, elevates Mcl-1 protein levels. We compared the three-dimensional structures of the complexes formed between BH3 peptides of both Bim and Noxa, and we show that a discrete C-terminal sequence of the Noxa BH3 is necessary to instigate Mcl-1 degradation.


Nature Structural & Molecular Biology | 1999

Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat.

Mark G. Hinds; Raymond S. Norton; David L. Vaux; Catherine L. Day

Members of the inhibitor of apoptosis (IAP) family of proteins are able to inhibit cell death following viral infection, during development or in cell lines in vitro. All IAP proteins bear one or more baculoviral IAP repeats (BIRs). Here we describe the solution structure of the third BIR domain from the mammalian IAP homolog B (MIHB /c- IAP-1). The BIR domain has a novel fold that is stabilized by zinc tetrahedrally coordinated by one histidine and three cysteine residues. The structure consists of a series of short α-helices and turns with the zinc packed in an unusually hydrophobic environment created by residues that are highly conserved among all BIRs.


Journal of Cell Science | 2003

The Bcl-2-regulated apoptotic pathway.

Simon N. Willis; Catherine L. Day; Mark G. Hinds; David C. S. Huang

Apoptosis (programmed cell death) is required for the removal of infected, damaged or unwanted cells and its disrupted regulation is implicated in cancer, autoimmunity and degenerative disorders. At the molecular level, multiple signaling pathways converge on a family of cysteine proteases (caspases


Cell Death & Differentiation | 2007

Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets

Mark G. Hinds; Callum Smits; R Fredericks-Short; Joanna M. Risk; M Bailey; David C. S. Huang; Catherine L. Day

All BH3-only proteins, key initiators of programmed cell death, interact tightly with multiple binding partners and have sequences of low complexity, properties that are the hallmark of intrinsically unstructured proteins (IUPs). We show, using spectroscopic methods, that the BH3-only proteins Bim, Bad and Bmf are unstructured in the absence of binding partners. Detailed sequence analyses are consistent with this observation and suggest that most BH3-only proteins are unstructured. When Bim binds and inactivates prosurvival proteins, most residues remain disordered, only the BH3 element becomes structured, and the short α-helical molecular recognition element can be considered to behave as a ‘bead on a string’. Coupled folding and binding is typical of many IUPs that have important signaling roles, such as BH3-only proteins, as the inherent structural plasticity favors interaction with multiple targets. This understanding offers promise for the development of BH3 mimetics, as multiple modes of binding are tolerated.


The EMBO Journal | 2003

The structure of Bcl‐w reveals a role for the C‐terminal residues in modulating biological activity

Mark G. Hinds; Martin Lackmann; Gretchen Skea; Penny J. Harrison; David C. S. Huang; Catherine L. Day

Pro‐survival Bcl‐2‐related proteins, critical regulators of apoptosis, contain a hydrophobic groove targeted for binding by the BH3 domain of the pro‐apoptotic BH3‐only proteins. The solution structure of the pro‐survival protein Bcl‐w, presented here, reveals that the binding groove is not freely accessible as predicted by previous structures of pro‐survival Bcl‐2‐like molecules. Unexpectedly, the groove appears to be occluded by the C‐terminal residues. Binding and kinetic data suggest that the C‐terminal residues of Bcl‐w and Bcl‐xL modulate pro‐survival activity by regulating ligand access to the groove. Binding of the BH3‐only proteins, critical for cell death initiation, is likely to displace the hydrophobic C‐terminal region of Bcl‐w and Bcl‐xL. Moreover, Bcl‐w does not act only by sequestering the BH3‐only proteins. There fore, pro‐survival Bcl‐2‐like molecules probably control the activation of downstream effectors by a mechanism that remains to be elucidated.


Journal of Molecular Biology | 2008

Structure of the BH3 Domains from the p53-Inducible BH3-Only Proteins Noxa and Puma in Complex with Mcl-1

Catherine L. Day; Callum Smits; F. Cindy Fan; Erinna F. Lee; W. Douglas Fairlie; Mark G. Hinds

Pro-survival proteins in the B-cell lymphoma-2 (Bcl-2) family have a defined specificity profile for their cell death-inducing BH3-only antagonists. Solution structures of myeloid cell leukaemia-1 (Mcl-1) in complex with the BH3 domains from Noxa and Puma, two proteins regulated by the tumour suppressor p53, show that they bind as amphipathic alpha-helices in the same hydrophobic groove of Mcl-1, using conserved residues for binding. Thermodynamic parameters for the interaction of Noxa, Puma and the related BH3 domains of Bmf, Bim, Bid and Bak with Mcl-1 were determined by calorimetry. These unstructured BH3 domains bind Mcl-1 with affinities that span 3 orders of magnitude, and binding is an enthalpically driven and entropy-enthalpy-compensated process. Alanine scanning analysis of Noxa demonstrated that only a subset of residues is required for interaction with Mcl-1, and these residues are localised to a short highly conserved sequence motif that defines the BH3 domain. Chemical shift mapping of Mcl-1:BH3 complexes showed that Mcl-1 engages all BH3 ligands in a similar way and that, in addition to changes in the immediate vicinity of the binding site, small molecule-wide structural adjustments accommodate ligand binding. Our studies show that unstructured peptides, such as the BH3 domains, behave like their structured counterparts and can bind tightly and selectively in an enthalpically driven process.


Journal of Cell Biology | 2003

Proapoptotic BH3-only proteins trigger membrane integration of prosurvival Bcl-w and neutralize its activity

Julie Wilson-Annan; Lorraine A. O'Reilly; Simon Crawford; George Hausmann; Jennifer G. Beaumont; Loes P. Parma; Lin Chen; Martin Lackmann; Trevor Lithgow; Mark G. Hinds; Catherine L. Day; Jerry M. Adams; David C. S. Huang

Prosurvival Bcl-2–like proteins, like Bcl-w, are thought to function on organelles such as the mitochondrion and to be targeted to them by their hydrophobic COOH-terminal domain. We unexpectedly found, however, that the membrane association of Bcl-w was enhanced during apoptosis. In healthy cells, Bcl-w was loosely attached to the mitochondrial membrane, but it was converted into an integral membrane protein by cytotoxic signals that induce binding of BH3-only proteins, such as Bim, or by the addition of BH3 peptides to lysates. As the structure of Bcl-w has revealed that its COOH-terminal domain occupies the hydrophobic groove where BH3 ligands bind, displacement of that domain by a BH3 ligand would displace the hydrophobic COOH-terminal residues, allowing their insertion into the membrane. To determine whether BH3 ligation is sufficient to induce the enhanced membrane affinity, or to render Bcl-w proapoptotic, we mimicked their complex by tethering the Bim BH3 domain to the NH2 terminus of Bcl-w. The chimera indeed bound avidly to membranes, in a fashion requiring the COOH-terminal domain, but neither promoted nor inhibited apoptosis. These results suggest that ligation of a proapoptotic BH3-only protein alters the conformation of Bcl-w, enhances membrane association, and neutralizes its survival function.


Journal of Molecular Biology | 2002

Structure of Domain III of the Blood-stage Malaria Vaccine Candidate, Plasmodium falciparum Apical Membrane Antigen 1 (AMA1)

Margie Nair; Mark G. Hinds; Andrew M. Coley; Anthony N. Hodder; Michael. Foley; Robin F. Anders; Raymond S. Norton

Apical membrane antigen 1 of the malarial parasite Plasmodium falciparum (Pf AMA1) is a merozoite antigen that is considered a strong candidate for inclusion in a malaria vaccine. Antibodies reacting with disulphide bond-dependent epitopes in AMA1 block invasion of host erythrocytes by P.falciparum merozoites, and we show here that epitopes involving sites of mutations in domain III are targets of inhibitory human antibodies. The solution structure of AMA1 domain III, a 14kDa protein, has been determined using NMR spectroscopy on uniformly 15N and 13C/15N-labelled samples. The structure has a well-defined disulphide-stabilised core region separated by a disordered loop, and both the N and C-terminal regions of the molecule are unstructured. Within the disulphide-stabilised core, residues 443-447 form a turn of helix and residues 495-498 and 503-506 an anti-parallel beta-sheet with a distorted type I beta-turn centred on residues 500-501, producing a beta-hairpin-type structure. The structured region of the molecule includes all three disulphide bonds. The previously unassigned connectivities for two of these bonds could not be established with certainty from the NMR data and structure calculations, but were determined to be C490-C507 and C492-C509 from an antigenic analysis of mutated forms of this domain expressed using phage display. Naturally occurring mutations in domain III that are located far apart in the primary sequence tend to cluster in the region of the disulphide core in the three-dimensional structure of the molecule. The structure shows that nearly all the polymorphic sites have a high level of solvent accessibility, consistent with their location in epitopes recognised by protective antibodies. Even though domain III in solution contains significant regions of disorder in the structure, the disulphide-stabilised core that is structured is clearly an important element of the antigenic surface of AMA1 recognised by protective antibodies.


Structure | 2008

Structural Plasticity Underpins Promiscuous Binding of the Prosurvival Protein A1.

Callum Smits; Peter E. Czabotar; Mark G. Hinds; Catherine L. Day

Apoptotic pathways are regulated by protein-protein interactions. Interaction of the BH3 domains of proapoptotic Bcl-2 family proteins with the hydrophobic groove of prosurvival proteins is critical. Whereas some BH3 domains bind in a promiscuous manner, others exhibit considerable selectivity and the sequence characteristics that distinguish these activities are unclear. In this study, crystal structures of complexes between the prosurvival protein A1 and the BH3 domains from Puma, Bmf, Bak, and Bid have been solved. The structure of A1 is similar to that of other prosurvival proteins, although features, such as an acidic patch in the binding groove, may allow specific therapeutic modulation of apoptosis. Significant conformational plasticity was observed in the intermolecular interactions and these differences explain some of the variation in affinity. This study, in combination with published data, suggests that interactions between conserved residues demarcate optimal binding.


Molecular Cell | 2011

CARD-Mediated Autoinhibition of cIAP1's E3 Ligase Activity Suppresses Cell Proliferation and Migration

Juanita Lopez; Sidonie Wicky John; Tencho Tenev; Gilles J. P. Rautureau; Mark G. Hinds; F Francalanci; Rebecca Wilson; Meike Broemer; Massimo Santoro; Catherine L. Day; Pascal Meier

E3 ligases mediate the covalent attachment of ubiquitin to target proteins thereby enabling ubiquitin-dependent signaling. Unraveling how E3 ligases are regulated is important because miscontrolled ubiquitylation can lead to disease. Cellular inhibitor of apoptosis (cIAP) proteins are E3 ligases that modulate diverse biological processes such as cell survival, proliferation, and migration. Here, we have solved the structure of the caspase recruitment domain (CARD) of cIAP1 and identified that it is required for cIAP1 autoregulation. We demonstrate that the CARD inhibits activation of cIAP1s E3 activity by preventing RING dimerization, E2 binding, and E2 activation. Moreover, we show that the CARD is required to suppress cell proliferation and migration. Further, CARD-mediated autoregulation is also necessary to maximally suppress caspase-8-dependent apoptosis and vascular tree degeneration in vivo. Taken together, our data reveal mechanisms by which the E3 ligase activity of cIAP1 is controlled, and how its deregulation impacts on cell proliferation, migration and cell survival.

Collaboration


Dive into the Mark G. Hinds's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. S. Huang

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles J. P. Rautureau

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Chen

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge