Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark G. M. Aarts is active.

Publication


Featured researches published by Mark G. M. Aarts.


The Plant Cell | 1998

Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the RPP8 Locus of Arabidopsis

John M. McDowell; Murali Dhandaydham; Terri A. Long; Mark G. M. Aarts; Stephen A. Goff; Eric B. Holub; Jeffery L. Dangl

Pathogen resistance (R) genes of the NBS-LRR class (for nucleotide binding site and leucine-rich repeat) are found in many plant species and confer resistance to a diverse spectrum of pathogens. Little is known about the mechanisms that drive NBS-LRR gene evolution in the host–pathogen arms race. We cloned the RPP8 gene (for resistance to Peronospora parasitica) and compared the structure of alleles at this locus in resistant Landsberg erecta (Ler-0) and susceptible Columbia (Col-0) accessions. RPP8-Ler encodes an NBS-LRR protein with a putative N-terminal leucine zipper and is more closely related to previously cloned R genes that confer resistance to bacterial pathogens than it is to other known RPP genes. The RPP8 haplotype in Ler-0 contains the functional RPP8-Ler gene and a nonfunctional homolog, RPH8A. In contrast, the rpp8 locus in Col-0 contains a single chimeric gene, which was likely derived from unequal crossing over between RPP8-Ler and RPH8A ancestors within a Ler-like haplotype. Sequence divergence among RPP8 family members has been accelerated by positive selection on the putative ligand binding region in the LRRs. These observations indicate that NBS-LRR molecular evolution is driven by the same mechanisms that promote rapid sequence diversification among other genes involved in non-self-recognition.


Plant Physiology | 2006

Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens

J.E. van de Mortel; L. Almar Villanueva; Henk Schat; J. Kwekkeboom; S. Coughlan; Perry D. Moerland; E. Ver Loren van Themaat; Maarten Koornneef; Mark G. M. Aarts

The micronutrient zinc has an essential role in physiological and metabolic processes in plants as a cofactor or structural element in 300 catalytic and noncatalytic proteins, but it is very toxic when available in elevated amounts. Plants tightly regulate their internal zinc concentrations in a process called zinc homeostasis. The exceptional zinc hyperaccumulator species Thlaspi caerulescens can accumulate up to 3% of zinc, but also high amounts of nickel and cadmium, without any sign of toxicity. This should have drastic effects on the zinc homeostasis mechanism. We examined in detail the transcription profiles of roots of Arabidopsis thaliana and T. caerulescens plants grown under deficient, sufficient, and excess supply of zinc. A total of 608 zinc-responsive genes with at least a 3-fold difference in expression level were detected in A. thaliana and 352 in T. caerulescens in response to changes in zinc supply. Only 14% of these genes were also zinc responsive in A. thaliana. When comparing A. thaliana with T. caerulescens at each zinc exposure, more than 2,200 genes were significantly differentially expressed (≥5-fold and false discovery rate < 0.05). While a large fraction of these genes are of yet unknown function, many genes with a different expression between A. thaliana and T. caerulescens appear to function in metal homeostasis, in abiotic stress response, and in lignin biosynthesis. The high expression of lignin biosynthesis genes corresponds to the deposition of lignin in the endodermis, of which there are two layers in T. caerulescens roots and only one in A. thaliana.


The Plant Cell | 2009

What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?

Carlos Alonso-Blanco; Mark G. M. Aarts; Leónie Bentsink; Joost J. B. Keurentjes; Matthieu Reymond; Dick Vreugdenhil; Maarten Koornneef

Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available.


Trends in Plant Science | 2013

Plant science: the key to preventing slow cadmium poisoning

Stephan Clemens; Mark G. M. Aarts; Sébastien Thomine; Nathalie Verbruggen

Practically all human populations are environmentally exposed to cadmium (Cd), mostly through plant-derived food. A growing body of epidemiological evidence suggests that there is no margin of safety between current Cd exposure levels and the threshold for adverse health effects and, hence, there is an urgent need to lower human Cd intake. Here we review recent studies on rice (Oryza sativa) and Cd-hyperaccumulating plants that have led to important insights into the processes controlling the passage of Cd from the soil to edible plant organs. The emerging molecular understanding of Cd uptake, root retention, root-to-shoot translocation and grain loading will enable the development of low Cd-accumulating crops.


Cellular and Molecular Life Sciences | 2012

The molecular mechanism of zinc and cadmium stress response in plants

Mark G. M. Aarts

When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway. ROS generation and signaling plays an important duel role in heavy metal detoxification and tolerance. In this review, we will compare the different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species. We will also include the role of metal-induced ROS signal transduction in this comparison, with the aim to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level.


Molecular Plant-microbe Interactions | 1998

Identification of R-Gene Homologous DNA Fragments Genetically Linked to Disease Resistance Loci in Arabidopsis thaliana

Mark G. M. Aarts; Bas te Lintel Hekkert; Eric B. Holub; Jim Beynon; Willem J. Stiekema; Andy Pereira

Disease resistance in plants is a desirable economic trait. A number of disease resistance genes from various plant species have been cloned so far. The gene products of some of these can be distinguished by the presence of an N-terminal nucleotide binding site and a C-terminal stretch of leucine-rich repeats. Although these gene products are structurally related, the DNA sequences are poorly conserved. Only parts of the nucleotide binding site share enough DNA identity to design primers for polymerase chain reaction amplification of related DNA sequences. Such primers were used to amplify different resistance-gene-like (RGL) DNA fragments from Arabidopsis thaliana accessions Landsberg erecta and Columbia. Almost all cloned DNA fragments were genetically closely linked with known disease resistance loci. Most RGL fragments were found in a clustered or dispersed multi-copy sequence organization, supporting the supposed correlation of RGL sequences and disease resistance loci.


The Plant Cell | 1999

ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis.

Hiroyoshi Kubo; Anton J. M. Peeters; Mark G. M. Aarts; Andy Pereira; Maarten Koornneef

The ANTHOCYANINLESS2 (ANL2) gene was isolated from Arabidopsis by using the maize Enhancer–Inhibitor transposon tagging system. Sequencing of the ANL2 gene showed that it encodes a homeodomain protein belonging to the HD–GLABRA2 group. As we report here, this homeobox gene is involved in the accumulation of anthocyanin and in root development. Histological observations of the anl2 mutant revealed that the accumulation of anthocyanin was greatly suppressed in subepidermal cells but only slightly reduced in epidermal cells. Furthermore, the primary roots of the anl2 mutant showed an aberrant cellular organization. We discuss a possible role of ANL2 in the accumulation of anthocyanin and cellular organization of the primary root.


PLOS ONE | 2008

The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis

Jules Beekwilder; Wessel van Leeuwen; Nicole M. van Dam; Monica Bertossi; Valentina Grandi; Luca Mizzi; Mikhail Soloviev; Laszlo Szabados; Jos Molthoff; Bert Schipper; Hans Verbocht; Ric C. H. de Vos; Piero Morandini; Mark G. M. Aarts; Arnaud G. Bovy

Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency

Ana G. L. Assunção; Eva Herrero; Bruno Huettel; Sangita Talukdar; Cezary Smaczniak; Richard G. H. Immink; Mandy van Eldik; Mark Fiers; Henk Schat; Mark G. M. Aarts

Zinc is an essential micronutrient for all living organisms. When facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation are not known. We present the identification of two closely related members of the Arabidopsis thaliana basic-region leucine-zipper (bZIP) transcription factor gene family, bZIP19 and bZIP23, that regulate the adaptation to low zinc supply. They were identified, in a yeast-one-hybrid screening, to associate to promoter regions of the zinc deficiency-induced ZIP4 gene of the Zrt- and Irt-related protein (ZIP) family of metal transporters. Although mutation of only one of the bZIP genes hardly affects plants, we show that the bzip19 bzip23 double mutant is hypersensitive to zinc deficiency. Unlike the wild type, the bzip19 bzip23 mutant is unable to induce the expression of a small set of genes that constitutes the primary response to zinc deficiency, comprising additional ZIP metal transporter genes. This set of target genes is characterized by the presence of one or more copies of a 10-bp imperfect palindrome in their promoter region, to which both bZIP proteins can bind. The bZIP19 and bZIP23 transcription factors, their target genes, and the characteristic cis zinc deficiency response elements they can bind to are conserved in higher plants. These findings are a significant step forward to unravel the molecular mechanism of zinc homeostasis in plants, allowing the improvement of zinc bio-fortification to alleviate human nutrition problems and phytoremediation strategies to clean contaminated soils.


New Phytologist | 2009

Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens

Ronald J. F. J. Oomen; Jian Wu; Françoise Lelièvre; Sandrine Blanchet; Pierre Richaud; Hélène Barbier-Brygoo; Mark G. M. Aarts; Sébastien Thomine

The ability of metal hyperaccumulating plants to tolerate and accumulate heavy metals results from adaptations of metal homeostasis. NRAMP metal transporters were found to be highly expressed in some hyperaccumulating plant species. Here, we identified TcNRAMP3 and TcNRAMP4, the closest homologues to AtNRAMP3 and AtNRAMP4 in Thlaspi caerulescens and characterized them by expression analysis, confocal imaging and heterologous expression in yeast and Arabidopsis thaliana. TcNRAMP3 and TcNRAMP4 are expressed at higher levels than their A. thaliana homologues. When expressed in yeast TcNRAMP3 and TcNRAMP4 transport the same metals as their respective A. thaliana orthologues: iron (Fe), manganese (Mn) and cadmium (Cd) but not zinc (Zn) for NRAMP3; Fe, Mn, Cd and Zn for NRAMP4. They also localize at the vacuolar membrane in A. thaliana protoplasts. Inactivation of AtNRAMP3 and AtNRAMP4 in A. thaliana results in strong Cd and Zn hypersensitivity, which is fully rescued by TcNRAMP3 or TcNRAMP4 expression. However, metal tolerance conferred by TcNRAMP expression in nramp3nramp4 mutant does not exceed that of wild-type A. thaliana. Our data indicate that the difference between TcNRAMP3 and TcNRAMP4 and their A. thaliana orthologues does not lie in a different protein function, but probably resides in a different expression level or expression pattern.

Collaboration


Dive into the Mark G. M. Aarts's collaboration.

Top Co-Authors

Avatar

Henk Schat

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy Harbinson

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dick Vreugdenhil

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jian Wu

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Artak Ghandilyan

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bas J. Zwaan

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Willem Kruijer

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge