Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Henkemeyer is active.

Publication


Featured researches published by Mark Henkemeyer.


Cell | 1996

Nuk Controls Pathfinding of Commissural Axons in the Mammalian Central Nervous System

Mark Henkemeyer; Donata Orioli; Jeffrey T. Henderson; Tracy M. Saxton; John C. Roder; Tony Pawson; Rüdiger Klein

Eph family receptor tyrosine kinases have been proposed to control axon guidance and fasciculation. To address the biological functions of the Eph family member Nuk, two mutations in the mouse germline have been generated: a protein null allele (Nuk1) and an allele that encodes a Nuk-beta gal fusion receptor lacking the tyrosine kinase and C-terminal domains (Nuk(lacZ)). In Nuk1 homozygous brains, the majority of axons forming the posterior tract of the anterior commissure migrate aberrantly to the floor of the brain, resulting in a failure of cortical neurons to link the two temporal lobes. These results indicate that Nuk, a receptor that binds transmembrane ligands, plays a critical and unique role in the pathfinding of specific axons in the mammalian central nervous system.


Cell | 1993

A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos

Jean Paul Olivier; Thomas Raabe; Mark Henkemeyer; Barry J. Dickson; Geraldine Mbamalu; Ben Margolis; Joseph Schlessinger; Ernst Hafen; Tony Pawson

A Drosophila gene (drk) encodes a widely expressed protein with a single SH2 domain and two flanking SH3 domains, which is homologous to the Sem-5 protein of C. elegans and mammalian GRB2. Genetic analysis suggests that drk function is essential for signaling by the sevenless receptor tyrosine kinase. Drk biological activity correlates with binding of its SH2 domain to activated receptor tyrosine kinases and concomitant localization of drk to the plasma membrane. In vitro, drk also binds directly to the C-terminal tail of Sos, a Ras guanine nucleotide-releasing protein (GNRP), which, like Ras1 and drk, is required for sevenless signaling. These results suggest that drk binds autophosphorylated receptor tyrosine kinases with its SH2 domain and the Sos GNRP through its SH3 domains, thereby coupling receptor tyrosine kinases to Ras activation. The conservation of these signaling proteins during evolution indicates that this is a general mechanism for linking tyrosine kinases to Ras.


Nature Neuroscience | 2004

Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling.

Juha P. Himanen; Michael J. Chumley; Martin Lackmann; Chen Li; William A. Barton; Phillip D. Jeffrey; Christopher Vearing; Detlef Geleick; David A. Feldheim; Andrew W. Boyd; Mark Henkemeyer; Dimitar B. Nikolov

The interactions between Eph receptor tyrosine kinases and their ephrin ligands regulate cell migration and axon pathfinding. The EphA receptors are generally thought to become activated by ephrin-A ligands, whereas the EphB receptors interact with ephrin-B ligands. Here we show that two of the most widely studied of these molecules, EphB2 and ephrin-A5, which have never been described to interact with each other, do in fact bind one another with high affinity. Exposure of EphB2-expressing cells to ephrin-A5 leads to receptor clustering, autophosphorylation and initiation of downstream signaling. Ephrin-A5 induces EphB2-mediated growth cone collapse and neurite retraction in a model system. We further show, using X-ray crystallography, that the ephrin-A5–EphB2 complex is a heterodimer and is architecturally distinct from the tetrameric EphB2–ephrin-B2 structure. The structural data reveal the molecular basis for EphB2–ephrin-A5 signaling and provide a framework for understanding the complexities of functional interactions and crosstalk between A- and B-subclass Eph receptors and ephrins.


The EMBO Journal | 1996

Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation.

Donata Orioli; Mark Henkemeyer; Greg Lemke; Rüdiger Klein; Tony Pawson

Sek4 and Nuk are members of the Eph‐related family of receptor protein‐tyrosine kinases. These receptors interact with a set of cell surface ligands that have recently been implicated in axon guidance and fasciculation. We now demonstrate that the formation of the corpus callosum and anterior commissure, two major commissural axon tracts that connect the two cerebral hemispheres, is critically dependent on Sek4 and Nuk. While mice deficient in Nuk exhibit defects in pathfinding of anterior commissure axons, sek4 mutants have defects in corpus callosum formation. The phenotype in both axon tracts is markedly more severe in sek4/nuk1 double mutants, indicating that the two receptors act in a partially redundant fashion. sek4/nuk1 double mutants also exhibit specific guidance and fasciculation defects of diencephalic axon tracts. Moreover, while mice singly deficient in either Sek4 or Nuk are viable, most sek4/nuk1 double mutants die immediately after birth primarily due to a cleft palate. These results demonstrate essential and cooperative functions for Sek4 and Nuk in establishing axon pathways in the developing brain, and during the development of facial structures.


Neuron | 2003

Ephrin-B2 and EphB1 Mediate Retinal Axon Divergence at the Optic Chiasm

Scott E. Williams; Fanny Mann; Lynda Erskine; Takeshi Sakurai; Shiniu Wei; Derrick J. Rossi; Nicholas W. Gale; Christine E. Holt; Carol A. Mason; Mark Henkemeyer

In animals with binocular vision, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. Here, we show that ephrin-Bs in the chiasm region direct the divergence of retinal axons through the selective repulsion of a subset of RGCs that express EphB1. Ephrin-B2 is expressed at the mouse chiasm midline as the ipsilateral projection is generated and is selectively inhibitory to axons from ventrotemporal (VT) retina, where ipsilaterally projecting RGCs reside. Moreover, blocking ephrin-B2 function in vitro rescues the inhibitory effect of chiasm cells and eliminates the ipsilateral projection in the semiintact mouse visual system. A receptor for ephrin-B2, EphB1, is found exclusively in regions of retina that give rise to the ipsilateral projection. EphB1 null mice exhibit a dramatically reduced ipsilateral projection, suggesting that this receptor contributes to the formation of the ipsilateral retinal projection, most likely through its repulsive interaction with ephrin-B2.


Nature | 2001

Crystal structure of an Eph receptor-ephrin complex

Juha-Pekka Himanen; Kanagalaghatta R. Rajashankar; Martin Lackmann; Chad A. Cowan; Mark Henkemeyer; Dimitar B. Nikolov

The Eph family of receptor tyrosine kinases and their membrane-anchored ephrin ligands are important in regulating cell–cell interactions as they initiate a unique bidirectional signal transduction cascade whereby information is communicated into both the Eph-expressing and the ephrin-expressing cells. Initially identified as regulators of axon pathfinding and neuronal cell migration, Ephs and ephrins are now known to have roles in many other cell–cell interactions, including those of vascular endothelial cells and specialized epithelia. Here we report the crystal structure of the complex formed between EphB2 and ephrin-B2, determined at 2.7 Å resolution. Each Eph receptor binds an ephrin ligand through an expansive dimerization interface dominated by the insertion of an extended ephrin loop into a channel at the surface of the receptor. Two Eph–Ephrin dimers then join to form a tetramer, in which each ligand interacts with two receptors and each receptor interacts with two ligands. The Eph and ephrin molecules are precisely positioned and orientated in these complexes, promoting higher-order clustering and the initiation of bidirectional signalling.


Neuron | 2002

EphB Forward Signaling Controls Directional Branch Extension and Arborization Required for Dorsal-Ventral Retinotopic Mapping

Robert Hindges; Todd McLaughlin; Nicolas Genoud; Mark Henkemeyer; Dennis D.M. O'Leary

We report that EphB receptors direct unique axonal behaviors required for mapping the dorsal-ventral (D-V) retinal axis along the lateral-medial (L-M) axis of the superior colliculus (SC). EphBs are expressed in a D-V gradient, ephrin-B1 in a L-M gradient in SC, and ephrin-B3 at its midline. EphBs and ephrin-Bs are expressed in countergradients in retina and SC. Developmental analyses reveal that retinal axons lack D-V ordering along the L-M axis, but directionally extend branches along it to establish ordered arbors. Directed branch extension is disrupted in EphB2; EphB3-deficient mice resulting in lateral ectopic arbors. Mice with kinase-inactive EphB2 have similar D-V mapping defects indicating that forward signaling dominates over reverse signaling. Our data suggest that branches of EphB expressing axons are attracted medially by ephrin-B1, and provide molecular mechanisms for D-V mapping in visual centers.


The EMBO Journal | 1997

Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells

Sacha J. Holland; Nicholas W. Gale; Gerald Gish; Richard A. Roth; Zhou Songyang; Lewis C. Cantley; Mark Henkemeyer; George D. Yancopoulos; Tony Pawson

Eph‐related receptor tyrosine kinases have been implicated in the control of axonal navigation and fasciculation. To investigate the biochemical mechanisms underlying such functions, we have expressed the EphB2 receptor (formerly Nuk/Cek5/Sek3) in neuronal NG108‐15 cells, and have observed the tyrosine phosphorylation of multiple cellular proteins upon activation of EphB2 by its ligand, ephrin‐B1 (formerly Elk‐L/Lerk2). The activated EphB2 receptor induced the tyrosine phosphorylation of a 62–64 kDa protein (p62dok), which in turn formed a complex with the Ras GTPase‐activating protein (RasGAP) and SH2/SH3 domain adaptor protein Nck. RasGAP also bound through its SH2 domains to tyrosine‐phosphorylated EphB2 in vitro, and complexed with activated EphB2 in vivo. We have localized an in vitro RasGAP‐binding site to conserved tyrosine residues Y604 and Y610 in the juxtamembrane region of EphB2, and demonstrated that substitution of these amino acids abolishes ephrin‐B1‐induced signalling events in EphB2‐expressing NG108‐15 cells. These tyrosine residues are followed by proline at the +3 position, consistent with the binding specificity of RasGAP SH2 domains determined using a degenerate phosphopeptide library. These results identify an EphB2‐activated signalling cascade involving proteins that potentially play a role in axonal guidance and control of cytoskeletal architecture.


Cell | 2006

EphB Receptors Coordinate Migration and Proliferation in the Intestinal Stem Cell Niche

Johan Holmberg; Maria Genander; Michael M. Halford; Cecilia Annerén; Mariann Sondell; Michael J. Chumley; Robert Silvany; Mark Henkemeyer; Jonas Frisén

More than 10(10) cells are generated every day in the human intestine. Wnt proteins are key regulators of proliferation and are known endogenous mitogens for intestinal progenitor cells. The positioning of cells within the stem cell niche in the intestinal epithelium is controlled by B subclass ephrins through their interaction with EphB receptors. We report that EphB receptors, in addition to directing cell migration, regulate proliferation in the intestine. EphB signaling promotes cell-cycle reentry of progenitor cells and accounts for approximately 50% of the mitogenic activity in the adult mouse small intestine and colon. These data establish EphB receptors as key coordinators of migration and proliferation in the intestinal stem cell niche.


Neuron | 2000

EphB2 guides axons at the midline and is necessary for normal vestibular function.

Chad A. Cowan; Nobuhiko Yokoyama; Lynne M. Bianchi; Mark Henkemeyer; Bernd Fritzsch

Mice lacking the EphB2 receptor tyrosine kinase display a cell-autonomous, strain-specific circling behavior that is associated with vestibular phenotypes. In mutant embryos, the contralateral inner ear efferent growth cones exhibit inappropriate pathway selection at the midline, while in mutant adults, the endolymph-filled lumen of the semicircular canals is severely reduced. EphB2 is expressed in the endolymph-producing dark cells in the inner ear epithelium, and these cells show ultrastructural defects in the mutants. A molecular link to fluid regulation is provided by demonstrating that PDZ domain-containing proteins that bind the C termini of EphB2 and B-ephrins can also recognize the cytoplasmic tails of anion exchangers and aquaporins. This suggests EphB2 may regulate ionic homeostasis and endolymph fluid production through macromolecular associations with membrane channels that transport chloride, bicarbonate, and water.

Collaboration


Dive into the Mark Henkemeyer's collaboration.

Top Co-Authors

Avatar

Christopher Dravis

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nan-Jie Xu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda A. Baker

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Chenaux

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Timothy Catchpole

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhiko Yokoyama

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge