Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chad A. Cowan is active.

Publication


Featured researches published by Chad A. Cowan.


Cell Stem Cell | 2010

Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.

Luigi Warren; Philip D. Manos; Tim Ahfeldt; Yuin-Han Loh; Hu Li; Frank H. Lau; Wataru Ebina; Pankaj K. Mandal; Zachary D. Smith; Alexander Meissner; George Q. Daley; Andrew S. Brack; James J. Collins; Chad A. Cowan; Thorsten M. Schlaeger; Derrick J. Rossi

Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine.


Cell | 2008

Disease-Specific Induced Pluripotent Stem Cells

In-Hyun Park; Natasha Arora; Hongguang Huo; Nimet Maherali; Tim Ahfeldt; Akiko Shimamura; M. William Lensch; Chad A. Cowan; George Q. Daley

Tissue culture of immortal cell strains from diseased patients is an invaluable resource for medical research but is largely limited to tumor cell lines or transformed derivatives of native tissues. Here we describe the generation of induced pluripotent stem (iPS) cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance; these diseases include adenosine deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-Diamond syndrome (SBDS), Gaucher disease (GD) type III, Duchenne (DMD) and Becker muscular dystrophy (BMD), Parkinson disease (PD), Huntington disease (HD), juvenile-onset, type 1 diabetes mellitus (JDM), Down syndrome (DS)/trisomy 21, and the carrier state of Lesch-Nyhan syndrome. Such disease-specific stem cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.


PLOS Genetics | 2008

Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains

Manching Ku; Richard Koche; Esther Rheinbay; Eric M. Mendenhall; Mitsuhiro Endoh; Tarjei S. Mikkelsen; Aviva Presser; Chad Nusbaum; Xiaohui Xie; Andrew S. Chi; Mazhar Adli; Simon Kasif; Leon M. Ptaszek; Chad A. Cowan; Eric S. Lander; Haruhiko Koseki; Bradley E. Bernstein

In embryonic stem (ES) cells, bivalent chromatin domains with overlapping repressive (H3 lysine 27 tri-methylation) and activating (H3 lysine 4 tri-methylation) histone modifications mark the promoters of more than 2,000 genes. To gain insight into the structure and function of bivalent domains, we mapped key histone modifications and subunits of Polycomb-repressive complexes 1 and 2 (PRC1 and PRC2) genomewide in human and mouse ES cells by chromatin immunoprecipitation, followed by ultra high-throughput sequencing. We find that bivalent domains can be segregated into two classes—the first occupied by both PRC2 and PRC1 (PRC1-positive) and the second specifically bound by PRC2 (PRC2-only). PRC1-positive bivalent domains appear functionally distinct as they more efficiently retain lysine 27 tri-methylation upon differentiation, show stringent conservation of chromatin state, and associate with an overwhelming number of developmental regulator gene promoters. We also used computational genomics to search for sequence determinants of Polycomb binding. This analysis revealed that the genomewide locations of PRC2 and PRC1 can be largely predicted from the locations, sizes, and underlying motif contents of CpG islands. We propose that large CpG islands depleted of activating motifs confer epigenetic memory by recruiting the full repertoire of Polycomb complexes in pluripotent cells.


Nature | 2010

From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus

Kiran Musunuru; Alanna Strong; Maria Frank-Kamenetsky; Noemi E. Lee; Tim Ahfeldt; Katherine V. Sachs; Xiaoyu Li; Hui Li; Nicolas Kuperwasser; Vera M. Ruda; James P. Pirruccello; Brian Muchmore; Ludmila Prokunina-Olsson; Jennifer L. Hall; Eric E. Schadt; Carlos R. Morales; Sissel Lund-Katz; Michael C. Phillips; Jamie Wong; William Cantley; Timothy Racie; Kenechi G. Ejebe; Marju Orho-Melander; Olle Melander; Victor Koteliansky; Kevin Fitzgerald; Ronald M. Krauss; Chad A. Cowan; Sekar Kathiresan; Daniel J. Rader

Recent genome-wide association studies (GWASs) have identified a locus on chromosome 1p13 strongly associated with both plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. Here we show through a series of studies in human cohorts and human-derived hepatocytes that a common noncoding polymorphism at the 1p13 locus, rs12740374, creates a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene. With small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver, we demonstrate that Sort1 alters plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion. Thus, we provide functional evidence for a novel regulatory pathway for lipoprotein metabolism and suggest that modulation of this pathway may alter risk for MI in humans. We also demonstrate that common noncoding DNA variants identified by GWASs can directly contribute to clinical phenotypes.


Nature Biotechnology | 2008

Marked differences in differentiation propensity among human embryonic stem cell lines

Kenji Osafune; Leslie Caron; Malgorzata Borowiak; Rita J Martinez; Claire S Fitz-Gerald; Yasunori Sato; Chad A. Cowan; Kenneth R. Chien; Douglas A. Melton

The differentiation potential of 17 human embryonic stem (hES) cell lines was compared. Some lines exhibit a marked propensity to differentiate into specific lineages, often with >100-fold differences in lineage-specific gene expression. For example, HUES 8 is best for pancreatic differentiation and HUES 3 for cardiomyocyte generation. These non-trivial differences in developmental potential among hES cell lines point to the importance of screening and deriving lines for lineage-specific differentiation.


Cell Stem Cell | 2013

Enhanced Efficiency of Human Pluripotent Stem Cell Genome Editing through Replacing TALENs with CRISPRs

Qiurong Ding; Stephanie N. Regan; Yulei Xia; Leoníe A. Oostrom; Chad A. Cowan; Kiran Musunuru

Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems are new classes of genome-editing tools that target desired genomic sites in mammalian cells (Miller et al., 2011; Hockemeyer et al., 2011; Cong et al., 2013; Mali et al., 2013; Jinek et al., 2013). TALENs bind as a pair around a genomic site, in which a double-strand break (DSB) is introduced by a dimer of FokI nuclease domains. Recently published type II CRISPR/Cas systems use Cas9 nuclease that is targeted to a genomic site by complexing with a synthetic guide RNA that hybridizes a 20-nucleotide DNA sequence (“protospacer”) beginning with G and immediately preceding an NGG motif recognized by Cas9—constituting a G(N)19NGG target DNA sequence—resulting in a DSB three nucleotides upstream of the NGG motif (Jinek et al., 2012). However it is generated, the DSB instigates either non-homologous end-joining (NHEJ), which is error-prone and conducive to frameshift mutations (indels) that knock out gene alleles, or homology-directed repair (HDR), which can be exploited with the use of an exogenously introduced double-strand or single-strand DNA repair template to knock in or correct a mutation in the genome. We recently reported the use of a TALEN genome-editing system to rapidly and efficiently generate mutant alleles of 15 different genes in human pluripotent stem cells (hPSCs) as a means of performing rigorous disease modeling (Ding et al., 2013); the proportions of clones bearing at least one mutant alelle ranged from 2%–34%. Although one example of the use of CRISPRs in hPSCs has been reported (Mali et al., 2013), the efficiency of allele targeting was only 2%–4% (albeit in unsorted cells, in contrast to our system; see below). We sought to compare the relative efficacies of CRISPRs and TALENs targeting the same genomic sites in the same hPSC lines with the use of the same delivery platform as we described previously (Ding et al., 2013). In the TALEN genome-editing system, we used the CAG promoter to cotranslate (via a viral 2A peptide) each TALEN with green fluorescent protein (GFP) or red fluorescent protein (RFP). For CRISPRs, we subcloned a human codon-optimized Cas9 gene with a C-terminal nuclear localization signal (Mali et al., 2013) into the same CAG expression plasmid with GFP, and we separately expressed the guide RNA (gRNA) from a plasmid with the human U6 polymerase III promoter (Mali et al., 2013). The 20-nucleotide protospacer sequence for each gRNA was introduced using polymerase chain reaction (PCR)-based methods. Whether using TALENs or CRISPRs, equal amounts of the two plasmids were co-electroporated into hPSCs—either 25 μg of each plasmid, or 15 μg of each plasmid along with 30 μg of a DNA repair template if attempting knock-in—followed by fluorescence-activated cell sorting (FACS) after 24–48 hours, clonal expansion of single cells, and screening for mutations at the genomic target site via PCR. We designed gRNAs matching G(N)19NGG sequences in seven loci in six genes—AKT2, CELSR2, CIITA, GLUT4, LINC00116, and SORT1—that we had previously successfully targeted with TALENs (Ding et al., 2013) and one locus, in LDLR, that we had not. We found that in our system CRISPRs consistently and substantially outperformed TALENs across loci and hPSC lines (see Table S1). The TALENs yielded clones with at least one mutant allele at efficiencies of 0%–34%, but matched CRISPRs yielded mutant clones at efficiencies of 51%–79% (Table S1). Just as with TALENs, CRISPRs produced a variety of indels of sizes ranging from one nucleotide to several dozen nucleotides in size, centered on the predicted cleavage sites, suggesting that NHEJ mutagenesis occurs in the same way regardless of whether CRISPRs or TALENs are used. We also found that CRISPRs readily generated homozygous mutant clones (7%–25% of all clones; Table S1) as discerned by sequencing. We also attempted to knock in E17K mutations into AKT2 using a 67-nucleotide single-stranded DNA oligonucleotide as previously described (Ding et al., 2013). Although the predicted CRISPR cleavage site lay 11 and 13 nucleotides from the point mutations, respectively, the CRISPR yielded knock-in clones at a rate of 11%, whereas TALENs yielded only 1.6% (Table S1). We speculate that the superior performance of CRISPRs in our system is due to the Cas9 protein being more highly expressed and better tolerated than TALENs in hPSCs, as we routinely observed earlier (<24 hours vs. 48 hours) and more robust (5%–10% of cells vs. <1%–2% of cells) GFP expression following electroporation. Other factors may include intrinsic DNA-unwinding activity of Cas9 and impaired TALEN binding on methylated DNA. It is possible that further optimization of the TALEN system that we developed could improve its efficiency and reduce the differential that we observe. Two potential disadvantages of CRISPRs are worth noting. First, the requirement for a G(N)19NGG target sequence somewhat limits site selection. Because either DNA strand can be targeted, a target sequence occurs on average every 32 basepairs. This is no barrier for gene knockout, where any coding sequence can be targeted, but it may present difficulties when trying to knock in or correct a mutation at a specific location. However, the requirement for a G at the start of the protospacer is dictated by the use of the U6 promoter to express the gRNA, and alternative CRISPR/Cas systems can relieve this requirement (Cong et al., 2013). Second, the extent of CRISPR off-target effects remains to be defined. Previous analyses have suggested that one-nucleotide mismatches in the first half of the protospacer are better tolerated than mismatches in second half (Jinek et al., 2012; Cong et al., 2013). None of the genomic sequences we targeted with CRISPRs have perfectly-matched or one-mismatch sequences elsewhere in the genome. For the AKT2 sequence, there is a two-mismatch sequence differing at nucleotides 1 and 3, in the more “tolerant” half of the protospacer; we obtained zero clones with mutations at this potential off-target site, as compared to 61% at the on-target site (Table S1), suggesting that at least in this instance off-target effects are not likely to be a significant concern. Judicious selection of target sites may well be able to minimize systematic off-target effects. Nevertheless, clear-cut determination of the relative risk for both TALEN- and CRISPR-based approaches will require a systematic analysis. It is important to highlight that all of these genome-editing technology approaches are still very much in development, and more detailed and comprehensive studies will be needed to determine their relative merits in different experimental circumstances. From a practical standpoint, CRISPRs are easier to implement than TALENs, as each TALEN pair must be constructed de novo, whereas for CRISPRs the Cas9 component is fixed and the gRNA requires only swapping of the 20-nucleotide protospacer. Given this consideration and our observations of substantially increased efficiency through replacing TALENs with CRISPRs in an otherwise identical system, we would suggest that CRISPRs might well prove to be a very powerful and broadly applicable tool for the stem cell community.


Nature | 2001

Crystal structure of an Eph receptor-ephrin complex

Juha-Pekka Himanen; Kanagalaghatta R. Rajashankar; Martin Lackmann; Chad A. Cowan; Mark Henkemeyer; Dimitar B. Nikolov

The Eph family of receptor tyrosine kinases and their membrane-anchored ephrin ligands are important in regulating cell–cell interactions as they initiate a unique bidirectional signal transduction cascade whereby information is communicated into both the Eph-expressing and the ephrin-expressing cells. Initially identified as regulators of axon pathfinding and neuronal cell migration, Ephs and ephrins are now known to have roles in many other cell–cell interactions, including those of vascular endothelial cells and specialized epithelia. Here we report the crystal structure of the complex formed between EphB2 and ephrin-B2, determined at 2.7 Å resolution. Each Eph receptor binds an ephrin ligand through an expansive dimerization interface dominated by the insertion of an extended ephrin loop into a channel at the surface of the receptor. Two Eph–Ephrin dimers then join to form a tetramer, in which each ligand interacts with two receptors and each receptor interacts with two ligands. The Eph and ephrin molecules are precisely positioned and orientated in these complexes, promoting higher-order clustering and the initiation of bidirectional signalling.


Journal of Clinical Investigation | 2010

A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates

Guillaume Blin; David Nury; Sonia Stefanovic; Tui Neri; Oriane Guillevic; Benjamin Brinon; Valérie Bellamy; Catherine Rucker-Martin; Pascal Barbry; Alain Bel; Patrick Bruneval; Chad A. Cowan; Julia Pouly; Shoukhrat Mitalipov; Elodie Gouadon; Patrice Binder; Albert Hagège; Michel Desnos; Jean-François Renaud; Philippe Menasché; Michel Pucéat

Cell therapy holds promise for tissue regeneration, including in individuals with advanced heart failure. However, treatment of heart disease with bone marrow cells and skeletal muscle progenitors has had only marginal positive benefits in clinical trials, perhaps because adult stem cells have limited plasticity. The identification, among human pluripotent stem cells, of early cardiovascular cell progenitors required for the development of the first cardiac lineage would shed light on human cardiogenesis and might pave the way for cell therapy for cardiac degenerative diseases. Here, we report the isolation of an early population of cardiovascular progenitors, characterized by expression of OCT4, stage-specific embryonic antigen 1 (SSEA-1), and mesoderm posterior 1 (MESP1), derived from human pluripotent stem cells treated with the cardiogenic morphogen BMP2. This progenitor population was multipotential and able to generate cardiomyocytes as well as smooth muscle and endothelial cells. When transplanted into the infarcted myocardium of immunosuppressed nonhuman primates, an SSEA-1+ progenitor population derived from Rhesus embryonic stem cells differentiated into ventricular myocytes and reconstituted 20% of the scar tissue. Notably, primates transplanted with an unpurified population of cardiac-committed cells, which included SSEA-1- cells, developed teratomas in the scar tissue, whereas those transplanted with purified SSEA-1+ cells did not. We therefore believe that the SSEA-1+ progenitors that we have described here have the potential to be used in cardiac regenerative medicine.


Cell Stem Cell | 2014

Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9

Pankaj K. Mandal; Leonardo M. R. Ferreira; Ryan L. Collins; Torsten B. Meissner; Christian L. Boutwell; Max Friesen; Vladimir Vrbanac; Brian S. Garrison; Alexei Stortchevoi; David Bryder; Kiran Musunuru; Harrison Brand; Andrew M. Tager; Todd M. Allen; Michael E. Talkowski; Derrick J. Rossi; Chad A. Cowan

Genome editing via CRISPR/Cas9 has rapidly become the tool of choice by virtue of its efficacy and ease of use. However, CRISPR/Cas9-mediated genome editing in clinically relevant human somatic cells remains untested. Here, we report CRISPR/Cas9 targeting of two clinically relevant genes, B2M and CCR5, in primary human CD4+ T cells and CD34+ hematopoietic stem and progenitor cells (HSPCs). Use of single RNA guides led to highly efficient mutagenesis in HSPCs but not in T cells. A dual guide approach improved gene deletion efficacy in both cell types. HSPCs that had undergone genome editing with CRISPR/Cas9 retained multilineage potential. We examined predicted on- and off-target mutations via target capture sequencing in HSPCs and observed low levels of off-target mutagenesis at only one site. These results demonstrate that CRISPR/Cas9 can efficiently ablate genes in HSPCs with minimal off-target mutagenesis, which could have broad applicability for hematopoietic cell-based therapy.


Neuron | 2000

EphB2 guides axons at the midline and is necessary for normal vestibular function.

Chad A. Cowan; Nobuhiko Yokoyama; Lynne M. Bianchi; Mark Henkemeyer; Bernd Fritzsch

Mice lacking the EphB2 receptor tyrosine kinase display a cell-autonomous, strain-specific circling behavior that is associated with vestibular phenotypes. In mutant embryos, the contralateral inner ear efferent growth cones exhibit inappropriate pathway selection at the midline, while in mutant adults, the endolymph-filled lumen of the semicircular canals is severely reduced. EphB2 is expressed in the endolymph-producing dark cells in the inner ear epithelium, and these cells show ultrastructural defects in the mutants. A molecular link to fluid regulation is provided by demonstrating that PDZ domain-containing proteins that bind the C termini of EphB2 and B-ephrins can also recognize the cytoplasmic tails of anion exchangers and aquaporins. This suggests EphB2 may regulate ionic homeostasis and endolymph fluid production through macromolecular associations with membrane channels that transport chloride, bicarbonate, and water.

Collaboration


Dive into the Chad A. Cowan's collaboration.

Top Co-Authors

Avatar

Kiran Musunuru

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Henkemeyer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge