Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Caulfield is active.

Publication


Featured researches published by Mark J. Caulfield.


The Lancet | 2003

Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial

Peter S Sever; Björn Dahlöf; Neil Poulter; Hans Wedel; Gareth Beevers; Mark J. Caulfield; Rory Collins; Sverre E. Kjeldsen; Arni Kristinsson; Gordon T. McInnes; Jesper Mehlsen; Markku S. Nieminen; Eoin O'Brien; Jan Östergren

BACKGROUND The lowering of cholesterol concentrations in individuals at high risk of cardiovascular disease improves outcome. No study, however, has assessed benefits of cholesterol lowering in the primary prevention of coronary heart disease (CHD) in hypertensive patients who are not conventionally deemed dyslipidaemic. METHODS Of 19342 hypertensive patients (aged 40-79 years with at least three other cardiovascular risk factors) randomised to one of two antihypertensive regimens in the Anglo-Scandinavian Cardiac Outcomes Trial, 10305 with non-fasting total cholesterol concentrations 6.5 mmol/L or less were randomly assigned additional atorvastatin 10 mg or placebo. These patients formed the lipid-lowering arm of the study. We planned follow-up for an average of 5 years, the primary endpoint being non-fatal myocardial infarction and fatal CHD. Data were analysed by intention to treat. FINDINGS Treatment was stopped after a median follow-up of 3.3 years. By that time, 100 primary events had occurred in the atorvastatin group compared with 154 events in the placebo group (hazard ratio 0.64 [95% CI 0.50-0.83], p=0.0005). This benefit emerged in the first year of follow-up. There was no significant heterogeneity among prespecified subgroups. Fatal and non-fatal stroke (89 atorvastatin vs 121 placebo, 0.73 [0.56-0.96], p=0.024), total cardiovascular events (389 vs 486, 0.79 [0.69-0.90], p=0.0005), and total coronary events (178 vs 247, 0.71 [0.59-0.86], p=0.0005) were also significantly lowered. There were 185 deaths in the atorvastatin group and 212 in the placebo group (0.87 [0.71-1.06], p=0.16). Atorvastatin lowered total serum cholesterol by about 1.3 mmol/L compared with placebo at 12 months, and by 1.1 mmol/L after 3 years of follow-up. INTERPRETATION The reductions in major cardiovascular events with atorvastatin are large, given the short follow-up time. These findings may have implications for future lipid-lowering guidelines.


Drugs | 2004

Prevention of Coronary and Stroke Events with Atorvastatin in Hypertensive Patients who have Average or Lower-than-Average Cholesterol Concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial— Lipid Lowering Arm (ASCOT-LLA): A Multicentre Randomised Controlled Trial

Peter S Sever; Björn Dahlöf; Neil Poulter; Hans Wedel; Gareth Beevers; Mark J. Caulfield; Rory Collins; Sverre E. Kjeldsen; Arni Kristinsson; Gordon T. McInnes; Jesper Mehlsen; Markku S. Nieminen; Eoin O'Brien; Jan Östergren

SummaryBackground The lowering of cholesterol concentrations in individuals at high risk of cardiovascular disease improves outcome. No study, however, has assessed benefits of cholesterol lowering in the primary prevention of coronary heart disease (CHD) in hypertensive patients who are not conventionally deemed dyslipidaemic. Methods Of 19 342 hypertensive patients (aged 40–79 years with at least three other cardiovascular risk factors) randomised to one of two antihypertensive regimens in the Anglo-Scandinavian Cardiac Outcomes Trial, 10 305 with nonfasting total cholesterol concentrations 6.5 mmol/L or less were randomly assigned additional atorvastatin 10 mg or placebo. These patients formed the lipid-lowering arm of the study. We planned follow-up for an average of 5 years, the primary endpoint being non-fatal myocardial infarction and fatal CHD. Data were analysed by intention to treat. Findings Treatment was stopped after a median follow-up of 3.3 years. By that time, 100 primary events had occurred in the atorvastatin group compared with 154 events in the placebo group (hazard ratio 0.64 [95% CI 0.50–0.83], p = 0.0005). This benefit emerged in the first year of follow-up. There was no significant heterogeneity among prespecified subgroups. Fatal and non-fatal stroke (89 atorvastatin vs 121 placebo, 0.73 [0.56–0.96], p = 0.024), total cardiovascular events (389 vs 486, 0.79 [0.69–0.90], p = 0.0005), and total coronary events (178 vs 247, 0.71 [0.59–0.86], p = 0.0005) were also significantly lowered. There were 185 deaths in the atorvastatin group and 212 in the placebo group (0.87 [0.71–1.06], p = 0.16). Atorvastatin lowered total serum cholesterol by about 1.3 mmol/L compared with placebo at 12 months, and by 1.1 mmol/L after 3 years of follow-up. Interpretation The reductions in major cardiovascular events with atorvastatin are large, given the short follow-up time. These findings may have implications for future lipid-lowering guidelines.


The Lancet | 2010

Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial.

Murray Esler; Henry Krum; Paul A. Sobotka; Markus P. Schlaich; Roland E. Schmieder; Michael Böhm; Felix Mahfoud; Horst Sievert; Nina Wunderlich; Lars Christian Rump; Oliver Vonend; Michael Uder; Mel Lobo; Mark J. Caulfield; Andrejs Erglis; Michel Azizi; Marc Sapoval; S. Thambar; Alexandre Persu; Jean Renkin; Heribert Schunkert; Joachim Weil; Uta C. Hoppe; Tony Walton; Dierk Scheinert; Thomas Binder; Andrzej Januszewicz; Adam Witkowski; Luis M. Ruilope; Robert Whitbourn

BACKGROUND Activation of renal sympathetic nerves is key to pathogenesis of essential hypertension. We aimed to assess effectiveness and safety of catheter-based renal denervation for reduction of blood pressure in patients with treatment-resistant hypertension. METHODS In this multicentre, prospective, randomised trial, patients who had a baseline systolic blood pressure of 160 mm Hg or more (≥150 mm Hg for patients with type 2 diabetes), despite taking three or more antihypertensive drugs, were randomly allocated in a one-to-one ratio to undergo renal denervation with previous treatment or to maintain previous treatment alone (control group) at 24 participating centres. Randomisation was done with sealed envelopes. Data analysers were not masked to treatment assignment. The primary effectiveness endpoint was change in seated office-based measurement of systolic blood pressure at 6 months. Primary analysis included all patients remaining in follow-up at 6 months. This trial is registered with ClinicalTrials.gov, number NCT00888433. FINDINGS 106 (56%) of 190 patients screened for eligibility were randomly allocated to renal denervation (n=52) or control (n=54) groups between June 9, 2009, and Jan 15, 2010. 49 (94%) of 52 patients who underwent renal denervation and 51 (94%) of 54 controls were assessed for the primary endpoint at 6 months. Office-based blood pressure measurements in the renal denervation group reduced by 32/12 mm Hg (SD 23/11, baseline of 178/96 mm Hg, p<0·0001), whereas they did not differ from baseline in the control group (change of 1/0 mm Hg [21/10], baseline of 178/97 mm Hg, p=0·77 systolic and p=0·83 diastolic). Between-group differences in blood pressure at 6 months were 33/11 mm Hg (p<0·0001). At 6 months, 41 (84%) of 49 patients who underwent renal denervation had a reduction in systolic blood pressure of 10 mm Hg or more, compared with 18 (35%) of 51 controls (p<0·0001). We noted no serious procedure-related or device-related complications and occurrence of adverse events did not differ between groups; one patient who had renal denervation had possible progression of an underlying atherosclerotic lesion, but required no treatment. INTERPRETATION Catheter-based renal denervation can safely be used to substantially reduce blood pressure in treatment-resistant hypertensive patients. FUNDING Ardian.


Journal of Hypertension | 2009

Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document.

Giuseppe Mancia; Stéphane Laurent; Ettore Ambrosioni; Michel Burnier; Mark J. Caulfield; Renata Cifkova; Denis Clement; Antonio Coca; Anna F. Dominiczak; Serap Erdine; Robert Fagard; Csaba Farsang; Guido Grassi; Hermann Haller; Anthony M. Heagerty; Sverre E. Kjeldsen; Wolfgang Kiowski; Jean Michel Mallion; Athanasios J. Manolis; Krzysztof Narkiewicz; Peter Nilsson; Michael H. Olsen; Karl Heinz Rahn; Josep Redon; Jose L. Rodicio; Luis M. Ruilope; Roland E. Schmieder; Harry A.J. Struijker-Boudier; Pieter A. van Zwieten; Margus Viigimaa

Abbreviations ACE: angiotensin-converting enzyme; BP: blood pressure; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; ESC: European Society of Cardiology; ESH: European Society of Hypertension; ET: endothelin; IMT: carotid intima-media thickness; JNC: Joint National Commit


The New England Journal of Medicine | 1994

Linkage of the angiotensinogen gene to essential hypertension

Mark J. Caulfield; Paul Lavender; Martin Farrall; Patricia B. Munroe; Mary Lawson; Paul Turner; Adrian Clark

BACKGROUND The renin-angiotensin system is a powerful pressor system with a major influence on salt and water homeostasis. Angiotensinogen (also called renin substrate) is a key component of this system; it is cleaved by renin to yield angiotensin I, which is then cleaved by angiotensin-converting enzyme to yield angiotensin II. The observation that plasma angiotensinogen levels correlate with blood pressure and track through families suggests that angiotensinogen may have a role in essential hypertension. We therefore investigated whether there is linkage between the angiotensinogen gene on chromosome 1q42-43 and essential hypertension. METHODS Samples of DNA from 63 white European families in which two or more members had essential hypertension were tested for linkage of the angiotensinogen gene to this disorder. Affected cousins, nephews, nieces, and half-siblings were included when possible. To test for linkage, we used as a marker a dinucleotide-repeat sequence flanking this gene, and we employed the affected-pedigree-member method of linkage analysis. Two molecular variants of the angiotensinogen gene, one encoding threonine instead of methionine at position 235 (M235T) and the other encoding methionine rather than threonine at position 174 (T174M), were also tested for possible association with essential hypertension. RESULTS We found significant linkage (t = 5.00, P < 0.001) and association (chi-square = 53.3, P < 0.001) of the angiotensinogen-gene locus to essential hypertension in the 63 multiplex families. This linkage was consistently maintained in the subgroup of subjects with diastolic pressure above 100 mm Hg and in the subgroups classified according to sex. It has been proposed previously that T174M and M235T are associated with essential hypertension. However, we found no association in our population between either polymorphism and this disorder. CONCLUSIONS This study provides strong and consistent support for the linkage to essential hypertension of regions within or close to the angiotensinogen gene. Precisely how mutations in this region may result in hypertension remains to be determined.


PLOS Genetics | 2009

Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations

Melanie Kolz; Toby Johnson; Serena Sanna; Alexander Teumer; Veronique Vitart; Markus Perola; Massimo Mangino; Eva Albrecht; Chris Wallace; Martin Farrall; Åsa Johansson; Dale R. Nyholt; Yurii S. Aulchenko; Jacques S. Beckmann; Sven Bergmann; Murielle Bochud; Morris J. Brown; Harry Campbell; John M. C. Connell; Anna F. Dominiczak; Georg Homuth; Claudia Lamina; Mark I. McCarthy; Thomas Meitinger; Vincent Mooser; Patricia B. Munroe; Matthias Nauck; John F. Peden; Holger Prokisch; Perttu Salo

Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.2×10−201), ABCG2 (p = 3.1×10−26), SLC17A1 (p = 3.0×10−14), SLC22A11 (p = 6.7×10−14), SLC22A12 (p = 2.0×10−9), SLC16A9 (p = 1.1×10−8), GCKR (p = 1.4×10−9), LRRC16A (p = 8.5×10−9), and near PDZK1 (p = 2.7×10−9). Identified variants were analyzed for gender differences. We found that the minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated with DL-carnitine (p = 4.0×10−26) and propionyl-L-carnitine (p = 5.0×10−8) concentrations, which in turn were associated with serum UA levels (p = 1.4×10−57 and p = 8.1×10−54, respectively), forming a triangle between SNP, metabolites, and UA levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels.


American Journal of Human Genetics | 2008

Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia.

Chris Wallace; Stephen Newhouse; Peter S. Braund; Feng Zhang; Martin D. Tobin; Mario Falchi; Kourosh R. Ahmadi; Richard Dobson; Ana Carolina B. Marçano; Cother Hajat; Paul R. Burton; Panagiotis Deloukas; Morris J. Brown; John M. C. Connell; Anna F. Dominiczak; G. Mark Lathrop; John Webster; Martin Farrall; Tim D. Spector; Nilesh J. Samani; Mark J. Caulfield; Patricia B. Munroe

Many common diseases are accompanied by disturbances in biochemical traits. Identifying the genetic determinants could provide novel insights into disease mechanisms and reveal avenues for developing new therapies. Here, we report a genome-wide association analysis for commonly measured serum and urine biochemical traits. As part of the WTCCC, 500,000 SNPs genome wide were genotyped in 1955 hypertensive individuals characterized for 25 serum and urine biochemical traits. For each trait, we assessed association with individual SNPs, adjusting for age, sex, and BMI. Lipid measurements were further examined in a meta-analysis of genome-wide data from a type 2 diabetes scan. The most promising associations were examined in two epidemiological cohorts. We discovered association between serum urate and SLC2A9, a glucose transporter (p = 2 x 10(-15)) and confirmed this in two independent cohorts, GRAPHIC study (p = 9 x 10(-15)) and TwinsUK (p = 8 x 10(-19)). The odds ratio for hyperuricaemia (defined as urate >0.4 mMol/l) is 1.89 (95% CI = 1.36-2.61) per copy of common allele. We also replicated many genes previously associated with serum lipids and found previously recognized association between LDL levels and SNPs close to genes encoding PSRC1 and CELSR2 (p = 1 x 10(-7)). The common allele was associated with a 6% increase in nonfasting serum LDL. This region showed increased association in the meta-analysis (p = 4 x 10(-14)). This finding provides a potential biological mechanism for the recent association of this same allele of the same SNP with increased risk of coronary disease.


PLOS ONE | 2008

Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies.

Brendan J. Keating; Sam E. Tischfield; Sarah S. Murray; Tushar Bhangale; Thomas S. Price; Joseph T. Glessner; Luana Galver; Jeffrey C. Barrett; Struan F. A. Grant; Deborah N. Farlow; Hareesh R. Chandrupatla; Mark Hansen; Saad Ajmal; George J. Papanicolaou; Yiran Guo; Mingyao Li; Paul I. W. de Bakker; Swneke D. Bailey; Alexandre Montpetit; Andrew C. Edmondson; Kent D. Taylor; Xiaowu Gai; Susanna S. Wang; Myriam Fornage; Tamim H. Shaikh; Leif Groop; Michael Boehnke; Alistair S. Hall; Andrew T. Hattersley; Edward C. Frackelton

A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a “cosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.


The Lancet | 2014

Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people

Eleni Rapsomaniki; Adam Timmis; Julie George; Mar Pujades-Rodriguez; Anoop Dinesh Shah; Spiros Denaxas; Ian R. White; Mark J. Caulfield; John Deanfield; Liam Smeeth; Bryan Williams; Aroon D. Hingorani; Harry Hemingway

Summary Background The associations of blood pressure with the different manifestations of incident cardiovascular disease in a contemporary population have not been compared. In this study, we aimed to analyse the associations of blood pressure with 12 different presentations of cardiovascular disease. Methods We used linked electronic health records from 1997 to 2010 in the CALIBER (CArdiovascular research using LInked Bespoke studies and Electronic health Records) programme to assemble a cohort of 1·25 million patients, 30 years of age or older and initially free from cardiovascular disease, a fifth of whom received blood pressure-lowering treatments. We studied the heterogeneity in the age-specific associations of clinically measured blood pressure with 12 acute and chronic cardiovascular diseases, and estimated the lifetime risks (up to 95 years of age) and cardiovascular disease-free life-years lost adjusted for other risk factors at index ages 30, 60, and 80 years. This study is registered at ClinicalTrials.gov, number NCT01164371. Findings During 5·2 years median follow-up, we recorded 83 098 initial cardiovascular disease presentations. In each age group, the lowest risk for cardiovascular disease was in people with systolic blood pressure of 90–114 mm Hg and diastolic blood pressure of 60–74 mm Hg, with no evidence of a J-shaped increased risk at lower blood pressures. The effect of high blood pressure varied by cardiovascular disease endpoint, from strongly positive to no effect. Associations with high systolic blood pressure were strongest for intracerebral haemorrhage (hazard ratio 1·44 [95% CI 1·32–1·58]), subarachnoid haemorrhage (1·43 [1·25–1·63]), and stable angina (1·41 [1·36–1·46]), and weakest for abdominal aortic aneurysm (1·08 [1·00–1·17]). Compared with diastolic blood pressure, raised systolic blood pressure had a greater effect on angina, myocardial infarction, and peripheral arterial disease, whereas raised diastolic blood pressure had a greater effect on abdominal aortic aneurysm than did raised systolic pressure. Pulse pressure associations were inverse for abdominal aortic aneurysm (HR per 10 mm Hg 0·91 [95% CI 0·86–0·98]) and strongest for peripheral arterial disease (1·23 [1·20–1·27]). People with hypertension (blood pressure ≥140/90 mm Hg or those receiving blood pressure-lowering drugs) had a lifetime risk of overall cardiovascular disease at 30 years of age of 63·3% (95% CI 62·9–63·8) compared with 46·1% (45·5–46·8) for those with normal blood pressure, and developed cardiovascular disease 5·0 years earlier (95% CI 4·8–5·2). Stable and unstable angina accounted for most (43%) of the cardiovascular disease-free years of life lost associated with hypertension from index age 30 years, whereas heart failure and stable angina accounted for the largest proportion (19% each) of years of life lost from index age 80 years. Interpretation The widely held assumptions that blood pressure has strong associations with the occurrence of all cardiovascular diseases across a wide age range, and that diastolic and systolic associations are concordant, are not supported by the findings of this high-resolution study. Despite modern treatments, the lifetime burden of hypertension is substantial. These findings emphasise the need for new blood pressure-lowering strategies, and will help to inform the design of randomised trials to assess them. Funding Medical Research Council, National Institute for Health Research, and Wellcome Trust.


BMJ | 2011

Management of hypertension: summary of NICE guidance.

Taryn Krause; Kate Lovibond; Mark J. Caulfield; Terry McCormack; Bryan Williams

Hypertension is one of the most important preventable causes of death worldwide and one of the commonest conditions treated in primary care in the United Kingdom, where it affects more than a quarter of all adults and over half of those over the age of 65 years.1 This article summarises the most recent recommendations from the National Institute for Health and Clinical Excellence (NICE) on the management of hypertension,2 which updates the 2004 and 2006 clinical guidelines.3 4 5 NICE recommendations are based on systematic reviews of best available evidence and explicit consideration of cost effectiveness. When minimal evidence is available, recommendations are based on the Guideline Development Group’s experience and opinion of what constitutes good practice. Evidence levels for the recommendations are given in italic in square brackets. ### Diagnosing hypertension (Updated recommendation) [ Based on the experience and opinion of the Guideline Development Group (GDG) ]

Collaboration


Dive into the Mark J. Caulfield's collaboration.

Top Co-Authors

Avatar

Patricia B. Munroe

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morris J. Brown

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Poulter

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Peter Sever

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge