Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Nijland is active.

Publication


Featured researches published by Mark J. Nijland.


Biology of Reproduction | 2003

Maternal Undernutrition from Early- to Mid-Gestation Leads to Growth Retardation, Cardiac Ventricular Hypertrophy, and Increased Liver Weight in the Fetal Sheep

K. A. Vonnahme; B. W. Hess; Thomas R. Hansen; Richard J. McCormick; Daniel C. Rule; G. E. Moss; William J. Murdoch; Mark J. Nijland; Donal C. Skinner; Peter W. Nathanielsz; Stephen P. Ford

Abstract Early gestation is critical for placentomal growth, differentiation, and vascularization, as well as fetal organogenesis. The fetal origins of adult disease hypothesis proposes that alterations in fetal nutrition and endocrine status result in developmental adaptations that permanently change structure, physiology, and metabolism, thereby predisposing individuals to cardiovascular, metabolic, and endocrine disease in adult life. Multiparous ewes were fed to 50% (nutrient restricted) or 100% (control fed) of total digestible nutrients from Days 28 to 78 of gestation. All ewes were weighed weekly and diets adjusted for individual weight loss or gain. Ewes were killed on Day 78 of gestation and gravid uteri recovered. Fetal body and organ weights were determined, and numbers, morphologies, diameters, and weights of all placentomes were obtained. From Day 28 to Day 78, restricted ewes lost 7.4% of body weight, while control ewes gained 7.5%. Maternal and fetal blood glucose concentrations were reduced in restricted versus control pregnancies. Fetuses were markedly smaller in the restricted group than in the control group. Further, restricted fetuses exhibited greater right- and left-ventricular and liver weights per unit fetal weight than control fetuses. No treatment differences were observed in any gross placentomal measurement. However, caruncular vascularity was enhanced in conceptuses from nutrient-restricted ewes but only in twin pregnancies. While these alterations in fetal/placental development may be beneficial to early fetal survival in the face of a nutrient restriction, their effects later in gestation as well as in postnatal life need further investigation.


The Journal of Physiology | 2005

Maternal nutrient restriction in sheep: hypertension and decreased nephron number in offspring at 9 months of age

Jeffrey S. Gilbert; Alvin L. Lang; Angela R. Grant; Mark J. Nijland

Pregnant ewes were fed either a 50% nutrient‐restricted (NR; n= 8) or a control 100% (C; n= 8) diet from day 28 to day 78 of gestation (dGA; term = 150 dGA). Lambs were born naturally, and fed to appetite throughout the study period. At 245 ± 1 days postnatal age (DPNA), offspring were instrumented for blood pressure measurements, with tissue collection at 270 DPNA. Protein expression was assessed using Western blot, glomerulus number determined via acid maceration and hormone changes by radioimmunoassay (RIA) or enzyme‐linked immunosorbent assay (ELISA). NR lambs had higher mean arterial pressure (MAP; 89.0 ± 6.6 versus 73.4 ± 1.6 mmHg; P < 0.05), fewer renal glomeruli (57.8 ± 23.8 versus 64.6 ± 19.3 × 104; P < 0.05), increased expression of angiotensin converting enzyme (ACE) in the renal cortex (942 ± 130 versus 464 ± 60 arbitrary pixel units (apu); P < 0.03), and increased angiotensin II receptor AT2 expression in the renal medulla (63.3 ± 12.1 versus 19.5 ± 44.2 × 104 apu; P < 0.03). All data are presented as mean ±s.e.m. The present data indicate that global maternal nutrient restriction (50%) during early to mid‐gestation impairs renal nephrogenesis, increases MAP, and alters expression of AT2 and ACE without an associated change in birth weight. These data demonstrate the existence of a critical window of fetal susceptibility during early to mid‐gestation that alters kidney development and blood pressure regulation in later life.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Maternal obesity accelerates fetal pancreatic β-cell but not α-cell development in sheep: prenatal consequences

Stephen P. Ford; Liren Zhang; Mei-Jun Zhu; Myrna M. Miller; Derek T. Smith; B. W. Hess; G. E. Moss; Peter W. Nathanielsz; Mark J. Nijland

Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.


Journal of Animal Science | 2010

Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring

N. M. Long; Lindsey A. George; Adam B. Uthlaut; Derek T. Smith; Mark J. Nijland; Peter W. Nathanielsz; Stephen P. Ford

We evaluated the effects of preconception and gestational obesity in the ewe on offspring growth, metabolism, and glucose homeostasis. From 60 d before conception through parturition, multiparous ewes were fed 100% (control; n = 8) or 150% (obese, OB; n = 10) of NRC (1985) recommendations. Ewes on the OB diet increased BW by 30% from diet initiation to mating (P = 0.03) and by 52% by d 135 of gestation (P = 0.04), whereas control ewes increased BW by 7% (P = 0.65) from diet initiation to d 135 of gestation. Lambs were weaned at 120 d of age and were maintained as a group. At 19.5 ± 0.5 mo of age, offspring from control and OB ewes were individually penned and subjected to a 12-wk ad libitum feeding challenge. At the beginning and end of the feeding challenge, dual x-ray absorptiometry was used to determine percentage of body fat, and a frequently sampled intravenous glucose tolerance test (FSIGT) with minimal model analysis was used to assess insulin and glucose homeostasis. At the beginning of the feeding challenge, BW and percentage of body fat were similar for control and OB offspring, averaging 69.0 ± 1.5 kg and 5.3 ± 0.5%, respectively. At the initial FSIGT, glucose effectiveness and insulin sensitivity were reduced (P < 0.05) in offspring from OB compared with control ewes. During the feeding challenge, plasma concentrations of leptin were increased (P < 0.05) in offspring from OB compared with control ewes. Fasted plasma glucose before the feeding challenge tended to be greater (P = 0.06) in the OB offspring compared with the control offspring (83.3 ± 1.4 vs. 79.0 ± 1.6 mg/dL, respectively). At the end of the feeding challenge, fasted plasma glucose and insulin were increased (P < 0.05) in the OB offspring compared with the control offspring (84.0 ± 1.4 vs. 79.5 ± 1.5 mg/dL and 30.1 ± 2.1 vs. 23.4 ± 2.2 µIU/mL, respectively). During the feeding challenge, offspring from OB ewes consumed approximately 10% more feed (P < 0.05) and tended to have increased BW gain (approximately 14%; P = 0.08) compared with offspring from control ewes. At the final dual x-ray absorptiometry scan, percentage of body fat was greater (P < 0.05) for offspring from OB ewes than for offspring from control ewes (16.5 ± 1.2 vs. 10.8 ± 1.1%). At the final FSIGT, offspring from OB ewes had a decreased (P ≤ 0.05) acute insulin response to glucose, disposition index, and glucose effectiveness, and tended (P = 0.10) to have a decreased insulin sensitivity compared with offspring from control ewes. Maternal obesity induced before and during gestation leads to alterations in appetite, glucose and insulin regulation, and adiposity of mature offspring.


The Journal of Physiology | 2005

Maternal nutrient restriction in sheep

Jeff Gilbert; Alvin L. Lang; Angela R. Grant; Mark J. Nijland

Pregnant ewes were fed either a 50% nutrient‐restricted (NR; n= 8) or a control 100% (C; n= 8) diet from day 28 to day 78 of gestation (dGA; term = 150 dGA). Lambs were born naturally, and fed to appetite throughout the study period. At 245 ± 1 days postnatal age (DPNA), offspring were instrumented for blood pressure measurements, with tissue collection at 270 DPNA. Protein expression was assessed using Western blot, glomerulus number determined via acid maceration and hormone changes by radioimmunoassay (RIA) or enzyme‐linked immunosorbent assay (ELISA). NR lambs had higher mean arterial pressure (MAP; 89.0 ± 6.6 versus 73.4 ± 1.6 mmHg; P < 0.05), fewer renal glomeruli (57.8 ± 23.8 versus 64.6 ± 19.3 × 104; P < 0.05), increased expression of angiotensin converting enzyme (ACE) in the renal cortex (942 ± 130 versus 464 ± 60 arbitrary pixel units (apu); P < 0.03), and increased angiotensin II receptor AT2 expression in the renal medulla (63.3 ± 12.1 versus 19.5 ± 44.2 × 104 apu; P < 0.03). All data are presented as mean ±s.e.m. The present data indicate that global maternal nutrient restriction (50%) during early to mid‐gestation impairs renal nephrogenesis, increases MAP, and alters expression of AT2 and ACE without an associated change in birth weight. These data demonstrate the existence of a critical window of fetal susceptibility during early to mid‐gestation that alters kidney development and blood pressure regulation in later life.


Current Opinion in Obstetrics & Gynecology | 2008

Prenatal origins of adult disease

Mark J. Nijland; Stephen P. Ford; Peter W. Nathanielsz

Purpose of review Human epidemiological and animal studies show that many chronic adult conditions have their antecedents in compromised fetal and early postnatal development. Developmental programming is defined as the response by the developing mammalian organism to a specific challenge during a critical time window that alters the trajectory of development with resulting persistent effects on phenotype. Mammals pass more biological milestones before birth than any other time in their lives. Each individuals phenotype is influenced by the developmental environment as much as their genes. A better understanding is required of gene–environment interactions leading to adult disease. Recent findings During development, there are critical periods of vulnerability to suboptimal conditions when programming may permanently modify disease susceptibility. Programming involves structural changes in important organs; altered cell number, imbalance in distribution of different cell types within the organ, and altered blood supply or receptor numbers. Compensatory efforts by the fetus may carry a price. Effects of programming may pass across generations by mechanisms that do not necessarily involve structural gene changes. Programming often has different effects in males and females. Summary Developmental programming shows that epigenetic factors play major roles in development of phenotype and predisposition to disease in later life.


Biology of Reproduction | 2004

Maternal Nutrient Restriction Reduces Concentrations of Amino Acids and Polyamines in Ovine Maternal and Fetal Plasma and Fetal Fluids

Hyukjung Kwon; Stephen P. Ford; Fuller W. Bazer; Thomas E. Spencer; Peter W. Nathanielsz; Mark J. Nijland; B. W. Hess; Guoyao Wu

Abstract Amino acids and polyamines are essential for placental and fetal growth, but little is known about their availability in the conceptus in response to maternal undernutrition. We hypothesized that maternal nutrient restriction reduces concentrations of amino acids and polyamines in the ovine conceptus. This hypothesis was tested in nutrient-restricted ewes between Days 28 and 78 (experiment 1) and between Days 28 and 135 (experiment 2) of gestation. In both experiments, ewes were assigned randomly on Day 28 of gestation to a control group fed 100% of National Research Council (NRC) nutrient requirements and to an nutrient-restricted group fed 50% of NRC requirements. Every 7 days beginning on Day 28 of gestation, ewes were weighed and rations adjusted for changes in body weight. On Day 78 of gestation, blood samples were obtained from the uterine artery and umbilical vein for analysis. In experiment 2, nutrient-restricted ewes on Day 78 of gestation either continued to be fed 50% of NRC requirements or were realimented to 100% of NRC requirements until Day 135. Fetal weight was reduced in nutrient-restricted ewes at both Day 78 (32%) and Day 135 (15%) compared with controls. Nutritional restriction markedly reduced (P < 0.05) concentrations of total α-amino acids (particularly serine, arginine-family amino acids, and branched-chain amino acids) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids at both mid and late gestation. Realimentation of nutrient-restricted ewes increased (P < 0.05) concentrations of total α-amino acids and polyamines in all the measured compartments and prevented intrauterine growth retardation. These novel findings demonstrate that 50% global nutrient restriction decreases concentrations of amino acids and polyamines in the ovine conceptus that could adversely impact key fetal functions. The results have important implications for understanding the mechanisms responsible for both intrauterine growth retardation and developmental origins of adult disease.


The Journal of Physiology | 2010

Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability

Mark J. Nijland; Kozoh Mitsuya; Cun Li; Stephen P. Ford; Thomas J. McDonald; Peter W. Nathanielsz; Laura A. Cox

Decreased maternal nutrient availability during pregnancy induces compensatory fetal metabolic and endocrine responses. Knowledge of cellular changes involved is critical to understanding normal and abnormal development. Several studies in rodents and sheep report increased fetal plasma cortisol and associated increased gluconeogenesis in response to maternal nutrient reduction (MNR) but observations in primates are lacking. We determined MNR effects on fetal liver phosphoenolpyruvate carboxykinase 1 (protein, PEPCK1; gene, PCK1 orthologous/homologous human chromosomal region 20q13.31) at 0.9 gestation (G). Female baboon social groups were fed ad libitum (control, CTR) or 70% CTR (MNR) from 0.16 to 0.9G when fetuses were delivered by caesarean section under general anaesthesia. Plasma cortisol was elevated in fetuses of MNR mothers (P < 0.05). Immunoreactive PEPCK1 protein was located around the liver lobule central vein and was low in CTR fetuses but rose to 63% of adult levels in MNR fetuses. PCK1 mRNA measured by QRT‐PCR increased in MNR (2.3‐fold; P < 0.05) while the 25% rise in protein by Western blot analysis was not significant. PCK1 promoter methylation analysis using bisulfite sequencing was significantly reduced in six out of nine CpG‐dinucleotides evaluated in MNR compared with CTR liver samples. In conclusion, these are the first data from a fetal non‐human primate indicating hypomethylation of the PCK1 promoter in the liver following moderate maternal nutrient reduction.


The Journal of Physiology | 2006

Effect of 30 per cent maternal nutrient restriction from 0.16 to 0.5 gestation on fetal baboon kidney gene expression

Laura A. Cox; Mark J. Nijland; Jeff Gilbert; Natalia E. Schlabritz-Loutsevitch; Gene B. Hubbard; Thomas J. McDonald; Robert E. Shade; Peter W. Nathanielsz

Despite variation in their protoplast organization and wall structure, monoraphid diatoms have traditionally been grouped as a single family or order, intermediate between the araphid and biraphid diatoms. However, the predominantly marine or brackish species of Achnanthes sensu stricto share protoplast and frustule features with representatives of the Mastogloiales rather than with other monoraphid diatoms. Meanwhile, studies of morphogenesis in Achnanthes have revealed that cells become monoraphid by filling in one raphe system during valve formation, indicating that the monoraphid condition is derived rather than primitive. Evidence from light and electron microscopy is presented to support the transfer of Achnanthes to the Mastogloiales, and an emended description of the order is given. It is concluded that the Achnanthales sensu Round et al. is a paraphyletic group and that the closest relatives of the various monoraphid genera must be sought among other raphid diatoms.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998

Development of ingestive behavior

Michael G. Ross; Mark J. Nijland

Swallowing represents a primary physiological function that provides for the ingestion of food and fluid. In precocial species, swallowing activity likely develops in utero to provide for a functional system during the neonatal period. The chronically instrumented ovine fetal preparation has provided the opportunity for recent advances in understanding the regulation of in utero swallowing activity. The near-term ovine fetus swallows fluid volumes (100-300 ml/kg) that are markedly greater, per body weight, than that of the adult (40-60 ml/kg). Spontaneous in utero swallowing and ingestive behavior contribute importantly to the regulation of amniotic fluid volume and composition, the acquisition and potential recirculation of solutes from the fetal environment, and the maturation of the fetal gastrointestinal tract. Fetal swallowing activity is influenced by fetal maturation, neurobehavioral state alterations, and the volume of amniotic fluid. Furthermore, intact dipsogenic mechanisms (osmolality, angiotensin II) have been demonstrated in the near-term ovine fetus. It remains unknown to what degree, if any, fetal swallowing may be influenced by nutrient appetite, salt appetite, or taste. Nevertheless, the development of dipsogenic and additional regulatory mechanisms for ingestive behavior occurs during fetal life and may be susceptible to changes in the pregnancy environment. This review describes what is currently known regarding the in utero development of ingestive behavior and the importance of this activity for fetal and perhaps ultimately adult fluid homeostasis.

Collaboration


Dive into the Mark J. Nijland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura A. Cox

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

M. G. Ross

University of California

View shared research outputs
Top Co-Authors

Avatar

Cun Li

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Thad Q. Bartlett

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge