Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark M. Mutawe is active.

Publication


Featured researches published by Mark M. Mutawe.


PLOS ONE | 2011

Mevalonate Cascade Regulation of Airway Mesenchymal Cell Autophagy and Apoptosis: A Dual Role for p53

Saeid Ghavami; Mark M. Mutawe; Pawan Sharma; Behzad Yeganeh; Karol D. McNeill; Thomas Klonisch; Helmut Unruh; Hessam H. Kashani; Dedmer Schaafsma; Marek Los; Andrew J. Halayko

Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM) and human airway fibroblasts (HAF), autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3) and immunoblotting (LC3 lipidation and Atg12-5 complex formation). Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased pro-apoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA), NOXA, and damage-regulated autophagy modulator (DRAM). Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-α and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis) and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy). Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease.


Biochimica et Biophysica Acta | 2010

Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c.

Saeid Ghavami; Mark M. Mutawe; Kristin Hauff; Gerald L. Stelmack; Dedmer Schaafsma; Pawan Sharma; Karol D. McNeill; Tyler S. Hynes; Sam Kung; Helmut Unruh; Thomas Klonisch; Grant M. Hatch; Marek Los; Andrew J. Halayko

Statins inhibit 3-hydroxy-3-methyl-glutarylcoenzyme CoA (HMG-CoA) reductase, the proximal enzyme for cholesterol biosynthesis. They exhibit pleiotropic effects and are linked to health benefits for diseases including cancer and lung disease. Understanding their mechanism of action could point to new therapies, thus we investigated the response of primary cultured human airway mesenchymal cells, which play an effector role in asthma and chronic obstructive lung disease (COPD), to simvastatin exposure. Simvastatin induced apoptosis involving caspase-9, -3 and -7, but not caspase-8 in airway smooth muscle cells and fibroblasts. HMG-CoA inhibition did not alter cellular cholesterol content but did abrogate de novo cholesterol synthesis. Pro-apoptotic effects were prevented by exogenous mevalonate, geranylgeranyl pyrophosphate and farnesyl pyrophosphate, downstream products of HMG-CoA. Simvastatin increased expression of Bax, oligomerization of Bax and Bak, and expression of BH3-only p53-dependent genes, PUMA and NOXA. Inhibition of p53 and silencing of p53 unregulated modulator of apoptosis (PUMA) expression partly counteracted simvastatin-induced cell death, suggesting a role for p53-independent mechanisms. Simvastatin did not induce mitochondrial release of cytochrome c, but did promote release of inhibitor of apoptosis (IAP) proteins, Smac and Omi. Simvastatin also inhibited mitochondrial fission with the loss of mitochondrial Drp1, an essential component of mitochondrial fission machinery. Thus, simvastatin activates novel apoptosis pathways in lung mesenchymal cells involving p53, IAP inhibitor release, and disruption of mitochondrial fission.


Current Molecular Medicine | 2008

Caveolae and Caveolins in the Respiratory System

Reinoud Gosens; Mark M. Mutawe; Sarah Martin; Sujata Basu; Sophie Bos; Thai Tran; Andrew J. Halayko

Caveolae are flask-shaped invaginations of the plasma membrane that are present in most structural cells. They owe their characteristic Omega-shape to complexes of unique proteins, the caveolins, which indirectly tether cholesterol and sphingolipid-enriched membrane microdomains to the cytoskeleton. Caveolins possess a unique scaffolding domain that anchors receptors, ion channels, second messenger producing enzymes, and effector kinases, thereby sequestering them to caveolae, and modulating cellular signaling and vesicular transport. The lungs express numerous caveolae and high levels of caveolins; therefore they likely play an important role in lung physiology. Indeed, recent and ongoing studies indicate important roles for caveolae and caveolins in the airway epithelium, airway smooth muscle, airway fibroblasts, airway inflammatory cells and the pulmonary vasculature. We review the role of caveolae and caveolins in lung cells and discuss their involvement in cellular signaling associated with asthma, COPD, lung cancer, idiopathic pulmonary fibrosis and pulmonary vascular defects.


American Journal of Respiratory Cell and Molecular Biology | 2011

The Mevalonate Cascade as a Target to Suppress Extracellular Matrix Synthesis by Human Airway Smooth Muscle

Dedmer Schaafsma; Gordon Dueck; Saeid Ghavami; Andrea Kroeker; Mark M. Mutawe; Kristin Hauff; Fred Y. Xu; Karol D. McNeill; Helmut Unruh; Grant M. Hatch; Andrew J. Halayko

Smooth muscle cells promote fibroproliferative airway remodeling in asthma, and transforming growth factor β1 (TGFβ1) is a key inductive signal. Statins are widely used to treat hyperlipidemia. Growing evidence indicates they also exert a positive impact on lung health, but the underlying mechanisms are unclear. We assessed the effects of 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase inhibition with simvastatin on the fibrotic function of primary cultured human airway smooth muscle cells. Simvastatin blocked de novo cholesterol synthesis, but total myocyte cholesterol content was unaffected. Simvastatin also abrogated TGFβ1-induced collagen I and fibronectin expression, and prevented collagen I secretion. The depletion of mevalonate cascade intermediates downstream from HMG-CoA underpinned the effects of simvastatin, because co-incubation with mevalonate, geranylgeranylpyrophosphate, or farnesylpyrophosphate prevented the inhibition of matrix protein expression. We also showed that human airway myocytes express both geranylgeranyl transferase 1 (GGT1) and farnesyltransferase (FT), and the inhibition of GGT1 (GGTI inhibitor-286, 10 μM), but not FT (FTI inhibitor-277, 10 μM), mirrored the suppressive effects of simvastatin on collagen I and fibronectin expression and collagen I secretion. Moreover, simvastatin and GGTI-286 both prevented TGFβ1-induced membrane association of RhoA, a downstream target of GGT1. Our findings suggest that simvastatin and GGTI-286 inhibit synthesis and secretion of extracellular matrix proteins by human airway smooth muscle cells by suppressing GGT1-mediated posttranslational modification of signaling molecules such as RhoA. These findings reveal mechanisms related to evidence for the positive impact of statins on pulmonary health.


Biochimica et Biophysica Acta | 2009

Role of BNIP3 in TNF-induced cell death — TNF upregulates BNIP3 expression

Saeid Ghavami; Mehdi Eshraghi; Kamran Kadkhoda; Mark M. Mutawe; Subbareddy Maddika; Graham H. Bay; Sebastian Wesselborg; Andrew J. Halayko; Thomas Klonisch; Marek Los

Tumor necrosis factor alpha (TNF) is a cytokine that induces caspase-dependent (apoptotic) and caspase-independent (necrosis-like) cell death in different cells. We used the murine fibrosarcoma cell line model L929 and a stable L929 transfectant over-expressing a mutated dominant-negative form of BNIP3 lacking the C-terminal transmembrane (TM) domain (L929-DeltaTM-BNIP3) to test if TNF-induced cell death involved pro-apoptotic Bcl2 protein BNIP3. Treatment of cells with TNF in the absence of actinomycin D caused a rapid fall in the mitochondrial membrane potential (DeltaPsim) and a prompt increase in reactive oxygen species (ROS) production, which was significantly less pronounced in L929-DeltaTM-BNIP3. TNF did not cause the mitochondrial release of apoptosis inducing factor (AIF) and Endonuclease G (Endo-G) but provoked the release of cytochrome c, Smac/Diablo, and Omi/HtrA2 at similar levels in both L929 and in L929-DeltaTM-BNIP3 cells. We observed TNF-associated increase in the expression of BNIP3 in L929 that was mediated by nitric oxide and significantly inhibited by nitric oxide synthase inhibitor N5-(methylamidino)-L-ornithine acetate. In L929, lysosomal swelling and activation were markedly increased as compared to L929-DeltaTM-BNIP3 and could be inhibited by treatment with inhibitors to vacuolar H+-ATPase and cathepsins -B/-L. Together, these data indicate that TNF-induced cell death involves BNIP3, ROS production, and activation of the lysosomal death pathway.


Journal of Cell Science | 2010

β-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release

Pawan Sharma; Saeid Ghavami; Gerald L. Stelmack; Karol D. McNeill; Mark M. Mutawe; Thomas Klonisch; Helmut Unruh; Andrew J. Halayko

The dystrophin–glycoprotein complex (DGC) links the extracellular matrix and actin cytoskeleton. Caveolae form membrane arrays on smooth muscle cells; we investigated the mechanism for this organization. Caveolin-1 and β-dystroglycan, the core transmembrane DGC subunit, colocalize in airway smooth muscle. Immunoprecipitation revealed the association of caveolin-1 with β-dystroglycan. Disruption of actin filaments disordered caveolae arrays, reduced association of β-dystroglycan and caveolin-1 to lipid rafts, and suppressed the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release. We generated novel human airway smooth muscle cell lines expressing shRNA to stably silence β-dystroglycan expression. In these myocytes, caveolae arrays were disorganized, caveolae structural proteins caveolin-1 and PTRF/cavin were displaced, the signaling proteins PLCβ1 and Gαq, which are required for receptor-mediated Ca2+ release, were absent from caveolae, and the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release, was diminished. These data reveal an interaction between caveolin-1 and β-dystroglycan and demonstrate that this association, in concert with anchorage to the actin cytoskeleton, underpins the spatial organization and functional role of caveolae in receptor-mediated Ca2+ release, which is an essential initiator step in smooth muscle contraction.


Journal of Cellular and Molecular Medicine | 2011

Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells

Reinoud Gosens; Gerald L. Stelmack; Sophie Bos; Gordon Dueck; Mark M. Mutawe; Dedmer Schaafsma; Helmut Unruh; William T. Gerthoffer; Johan Zaagsma; Herman Meurs; Andrew J. Halayko

Airway smooth muscle cells exhibit phenotype plasticity that underpins their ability to contribute both to acute bronchospasm and to the features of airway remodelling in chronic asthma. A feature of mature, contractile smooth muscle cells is the presence of abundant caveolae, plasma membrane invaginations that develop from the association of lipid rafts with caveolin‐1, but the functional role of caveolae and caveolin‐1 in smooth muscle phenotype plasticity is unknown. Here, we report a key role for caveolin‐1 in promoting phenotype maturation of differentiated airway smooth muscle induced by transforming growth factor (TGF)‐β1. As assessed by Western analysis and laser scanning cytometry, caveolin‐1 protein expression was selectively enriched in contractile phenotype airway myocytes. Treatment with TGF‐β1 induced profound increases in the contractile phenotype markers sm‐α‐actin and calponin in cells that also accumulated abundant caveolin‐1; however, siRNA or shRNAi inhibition of caveolin‐1 expression largely prevented the induction of these contractile phenotype marker proteins by TGF‐β1. The failure by TGF‐β1 to adequately induce the expression of these smooth muscle specific proteins was accompanied by a strongly impaired induction of eukaryotic initiation factor‐4E binding protein(4E‐BP)1 phosphorylation with caveolin‐1 knockdown, indicating that caveolin‐1 expression promotes TGF‐β1 signalling associated with myocyte maturation and hypertrophy. Furthermore, we observed increased expression of caveolin‐1 within the airway smooth muscle bundle of guinea pigs repeatedly challenged with allergen, which was associated with increased contractile protein expression, thus providing in vivo evidence linking caveolin‐1 expression with accumulation of contractile phenotype myocytes. Collectively, we identify a new function for caveolin‐1 in controlling smooth muscle phenotype; this mechanism could contribute to allergic asthma.


Respiratory Research | 2011

Simvastatin inhibits TGFβ1-induced fibronectin in human airway fibroblasts

Dedmer Schaafsma; Karol D. McNeill; Mark M. Mutawe; Saeid Ghavami; Helmut Unruh; Eric Jacques; Michel Laviolette; Jamila Chakir; Andrew J. Halayko

BackgroundBronchial fibroblasts contribute to airway remodelling, including airway wall fibrosis. Transforming growth factor (TGF)-β1 plays a major role in this process. We previously revealed the importance of the mevalonate cascade in the fibrotic response of human airway smooth muscle cells. We now investigate mevalonate cascade-associated signaling in TGFβ1-induced fibronectin expression by bronchial fibroblasts from non-asthmatic and asthmatic subjects.MethodsWe used simvastatin (1-15 μM) to inhibit 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase which converts HMG-CoA to mevalonate. Selective inhibitors of geranylgeranyl transferase-1 (GGT1; GGTI-286, 10 μM) and farnesyl transferase (FT; FTI-277, 10 μM) were used to determine whether GGT1 and FT contribute to TGFβ1-induced fibronectin expression. In addition, we studied the effects of co-incubation with simvastatin and mevalonate (1 mM), geranylgeranylpyrophosphate (30 μM) or farnesylpyrophosphate (30 μM).ResultsImmunoblotting revealed concentration-dependent simvastatin inhibition of TGFβ1 (2.5 ng/ml, 48 h)-induced fibronectin. This was prevented by exogenous mevalonate, or isoprenoids (geranylgeranylpyrophosphate or farnesylpyrophosphate). The effects of simvastatin were mimicked by GGTI-286, but not FTI-277, suggesting fundamental involvement of GGT1 in TGFβ1-induced signaling. Asthmatic fibroblasts exhibited greater TGFβ1-induced fibronectin expression compared to non-asthmatic cells; this enhanced response was effectively reduced by simvastatin.ConclusionsWe conclude that TGFβ1-induced fibronectin expression in airway fibroblasts relies on activity of GGT1 and availability of isoprenoids. Our results suggest that targeting regulators of isoprenoid-dependent signaling holds promise for treating airway wall fibrosis.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle.

Saeid Ghavami; Mark M. Mutawe; Dedmer Schaafsma; Behzad Yeganeh; Helmut Unruh; Thomas Klonisch; Andrew J. Halayko

Geranylgeranyl transferase 1 (GGT1) is involved in the posttranslational prenylation of signaling proteins, such as small GTPases. We have shown that blocking the formation of isoprenoids with statins regulates survival of human lung mesenchymal cells; thus, we tested the hypothesis that GGT1 may specifically modulate programmed cell death pathways in these cells. To this end, human airway smooth muscle (HASM) cells were treated with the selective GGT1 inhibitor GGTi-298. Apoptosis was seen using assays for cellular DNA content and caspase activation. Induction of autophagy was observed using transmission electron microscopy, immunoblotting for LC3 lipidation and Atg5-12 complex content, and confocal microscopy to detect formation of lysosome-localized LC3 punctae. Notably, GGT1 inhibition induced expression of p53-dependent proteins, p53 upregulated modulator of apoptosis (Noxa), and damage-regulated autophagy modulator (DRAM), this was inhibited by the p53 transcriptional activation inhibitor cyclic-pifithrin-α. Inhibition of autophagy with bafilomycin-A1 or short-hairpin RNA silencing of Atg7 substantially augmented GGTi-298-induced apoptosis. Overall, we demonstrate for the first time that pharmacological inhibition of GGT1 induces simultaneous p53-dependent apoptosis and autophagy in HASM. Moreover, autophagy regulates apoptosis induction. Thus, our findings identify GGT1 as a key regulator of HASM cell viability.


Biochimica et Biophysica Acta | 2014

Airway mesenchymal cell death by mevalonate cascade inhibition: integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins.

Saeid Ghavami; Pawan Sharma; Behzad Yeganeh; Oluwaseun O. Ojo; Aruni Jha; Mark M. Mutawe; Hessam H. Kashani; Marek Los; Thomas Klonisch; Helmut Unruh; Andrew J. Halayko

HMG-CoA reductase, the proximal rate-limiting enzyme in the mevalonate pathway, is inhibited by statins. Beyond their cholesterol lowering impact, statins have pleiotropic effects and their use is linked to improved lung health. We have shown that mevalonate cascade inhibition induces apoptosis and autophagy in cultured human airway mesenchymal cells. Here, we show that simvastatin also induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in these cells. We tested whether coordination of ER stress, autophagy and apoptosis determines survival or demise of human lung mesenchymal cells exposed to statin. We observed that simvastatin exposure activates UPR (activated transcription factor 4, activated transcription factor 6 and IRE1α) and caspase-4 in primary human airway fibroblasts and smooth muscle cells. Exogenous mevalonate inhibited apoptosis, autophagy and UPR, but exogenous cholesterol was without impact, indicating that sterol intermediates are involved with mechanisms mediating statin effects. Caspase-4 inhibition decreased simvastatin-induced apoptosis, whereas inhibition of autophagy by ATG7 or ATG3 knockdown significantly increased cell death. In BAX(-/-)/BAK(-/-) murine embryonic fibroblasts, simvastatin-triggered apoptotic and UPR events were abrogated, but autophagy flux was increased leading to cell death via necrosis. Our data indicate that mevalonate cascade inhibition, likely associated with depletion of sterol intermediates, can lead to cell death via coordinated apoptosis, autophagy, and ER stress. The interplay between these pathways appears to be principally regulated by autophagy and Bcl-2-family pro-apoptotic proteins. These findings uncover multiple mechanisms of action of statins that could contribute to refining the use of such agent in treatment of lung disease.

Collaboration


Dive into the Mark M. Mutawe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pawan Sharma

Woolcock Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge