Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark P. Boneschanscher is active.

Publication


Featured researches published by Mark P. Boneschanscher.


Science | 2014

Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices

Mark P. Boneschanscher; Wiel H. Evers; Jaco J. Geuchies; Thomas Altantzis; Bart Goris; Freddy T. Rabouw; S. A. P. van Rossum; H. S. J. van der Zant; Laurens D. A. Siebbeles; G. Van Tendeloo; Ingmar Swart; J. Hilhorst; Andrei V. Petukhov; Sara Bals; Daniel Vanmaekelbergh

Nanoparticle lattices and surfaces The challenge of resolving the details of the surfaces or assemblies of colloidal semiconductor nanoparticles can be overcome if several characterization methods are used (see the Perspective by Boles and Talapin). Boneschanscher et al. examined honeycomb superlattices of lead selenide nanocrystals formed by the bonding of crystal faces using several methods, including high-resolution electron microscopy and tomography. The structure had octahedral symmetry with the nanocrystals distorted through “necking”: the expansion of the contact points between the nanocrystals. Zherebetskyy et al. used a combination of theoretical calculations and spectroscopic methods to study the surface layer of lead sulfide nanocrystals synthesized in water. In addition to the oleic acid groups that capped the nanocrystals, hydroxyl groups were present as well. Science, this issue p. 1377, p. 1380; see also p. 1340 Metal-chalcogenide nanocrystals undergo necking and large-scale atomic rearrangements when forming a surface lattice. [Also see Perspective by Boles and Talapin] Oriented attachment of synthetic semiconductor nanocrystals is emerging as a route for obtaining new semiconductors that can have Dirac-type electronic bands such as graphene, but also strong spin-orbit coupling. The two-dimensional (2D) assembly geometry will require both atomic coherence and long-range periodicity of the superlattices. We show how the interfacial self-assembly and oriented attachment of nanocrystals results in 2D metal chalcogenide semiconductors with a honeycomb superlattice. We present an extensive atomic and nanoscale characterization of these systems using direct imaging and wave scattering methods. The honeycomb superlattices are atomically coherent and have an octahedral symmetry that is buckled; the nanocrystals occupy two parallel planes. Considerable necking and large-scale atomic motion occurred during the attachment process.


Nature Communications | 2013

Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom

J. van der Lit; Mark P. Boneschanscher; Daniel Vanmaekelbergh; M. Ijäs; Christer Uppstu; Mikko M. Ervasti; Ari Harju; Peter Liljeroth; Ingmar Swart

Graphene nanostructures, where quantum confinement opens an energy gap in the band structure, hold promise for future electronic devices. To realize the full potential of these materials, atomic-scale control over the contacts to graphene and the graphene nanostructure forming the active part of the device is required. The contacts should have a high transmission and yet not modify the electronic properties of the active region significantly to maintain the potentially exciting physics offered by the nanoscale honeycomb lattice. Here we show how contacting an atomically well-defined graphene nanoribbon to a metallic lead by a chemical bond via only one atom significantly influences the charge transport through the graphene nanoribbon but does not affect its electronic structure. Specifically, we find that creating well-defined contacts can suppress inelastic transport channels.


Nano Letters | 2009

Quantitative structural analysis of binary nanocrystal superlattices by electron tomography

Heiner Friedrich; Cédric Gommes; Karin Overgaag; Johannes D. Meeldijk; Wiel H. Evers; Bart de Nijs; Mark P. Boneschanscher; Petra E. de Jongh; Arie J. Verkleij; Krijn P. de Jong; Alfons van Blaaderen; Daniel Vanmaekelbergh

Binary nanocrystal superlattices, that is, ordered structures of two sorts of nanocolloids, hold promise for a series of functional materials with novel collective properties. Here we show that based on electron tomography a comprehensive, quantitative, three-dimensional characterization of these systems down to the single nanocrystal level can be achieved, which is key in understanding the emerging materials properties. On four binary lattices composed of PbSe, CdSe, and Au nanocrystals, we illustrate that ambiguous interpretations based on two-dimensional transmission electron microscopy can be prevented, nanocrystal sizes and superlattice parameters accurately determined, individual crystallographic point and plane defects studied, and the order/disorder at the top and bottom surfaces imaged. Furthermore, our results suggest that superlattice nucleation and growth occurred at the suspension/air interface and that the unit cells of some lattices are anisotropically deformed upon drying.


ACS Nano | 2012

Quantitative Atomic Resolution Force Imaging on Epitaxial Graphene with Reactive and Nonreactive AFM Probes

Mark P. Boneschanscher; Joost van der Lit; Zhixiang Sun; Ingmar Swart; Peter Liljeroth; Daniel Vanmaekelbergh

Atomic force microscopy (AFM) images of graphene and graphite show contrast with atomic periodicity. However, the contrast patterns vary depending on the atomic termination of the AFM tip apex and the tip-sample distance, hampering the identification of the atomic positions. Here, we report quantitative AFM imaging of epitaxial graphene using inert (carbon-monoxide-terminated) and reactive (iridium-terminated) tips. The atomic image contrast is markedly different with these tip terminations. With a reactive tip, we observe an inversion from attractive to repulsive atomic contrast with decreasing tip-sample distance, while a nonreactive tip only yields repulsive atomic contrast. We are able to identify the atoms with both tips at any tip-sample distance. This is a prerequisite for future structural and chemical analysis of adatoms, defects, and the edges of graphene nanostructures, crucial for understanding nanoscale graphene devices.


ACS Nano | 2014

Sample Corrugation Affects the Apparent Bond Lengths in Atomic Force Microscopy

Mark P. Boneschanscher; Sampsa K. Hämäläinen; Peter Liljeroth; Ingmar Swart

Frequency modulation atomic force microscopy (AFM) allows the chemical structure of planar molecules to be determined with atomic resolution. Typically, these measurements are carried out in constant-height mode using carbon monoxide (CO) terminated tips. Such tips exhibit considerable flexibility, i.e., the CO molecule can bend laterally due to the tip-sample interaction. Using epitaxial graphene as a model system, we demonstrate experimentally that the apparent atomic positions measured by AFM depend on the sample corrugation. Using molecular mechanics simulations, we explain these observations by the interplay of the CO bending and the nonlinear background signal arising from the neighboring atoms. These effects depend nontrivially on the tip-sample distance and limit the achievable accuracy on the bond length determination based on AFM experiments.


Nano Letters | 2013

Electron Tomography Resolves a Novel Crystal Structure in a Binary Nanocrystal Superlattice

Mark P. Boneschanscher; Wiel H. Evers; Weikai Qi; Johannes D. Meeldijk; Marjolein Dijkstra; Daniel Vanmaekelbergh

The self-assembly of different nanocrystals into a binary superlattice is of interest for both colloidal science and nanomaterials science. New properties may emerge from the interaction between the nanocrystal building blocks that are ordered in close contact in three dimensions. Identification of the superlattice structure including its defects is of key interest in understanding the electrical and optical properties of these systems. Transmission electron microscopy (TEM) has been very instrumental to reach this goal but fails for complex crystal structures and buried defects. Here, we use electron tomography to resolve the three-dimensional crystal structure of a binary superlattice that could not be resolved by TEM only. The structure with a [PbSe]6[CdSe]19 stoichiometry has no analogue in the atomic world. Moreover we will show how tomography can overcome the clouding effects of planar defects on structure identification by TEM.


Physical Review B | 2013

Structure and local variations of the graphene moiré on Ir(111)

Sampsa K. Hämäläinen; Mark P. Boneschanscher; Peter H. Jacobse; Ingmar Swart; Katariina Pussi; Wolfgang Moritz; Jouko Lahtinen; Peter Liljeroth; Jani Sainio

We have studied the incommensurate moire structure of epitaxial graphene grown on iridium(111) by dynamic low-energy electron diffraction [LEED I(V)] and noncontact atomic force microscopy (AFM) with a CO-terminated tip. Our LEED I(V) results yield the average positions of all the atoms in the surface unit cell and are in qualitative agreement with the structure obtained from density functional theory. The AFM experiments reveal local variations of the moire structure: The corrugation varies smoothly over several moire unit cells between 42 and 56 pm. We attribute these variations to the varying registry between the moire symmetry sites and the underlying substrate. We also observe isolated outliers, where the moire top sites can be offset by an additional 10 pm. This study demonstrates that AFM imaging can be used to directly yield the local surface topography with pm accuracy even on incommensurate two-dimensional structures with varying chemical reactivity.


Nano Letters | 2014

Conformal and Atomic Characterization of Ultrathin CdSe Platelets with a Helical Shape

Eline M. Hutter; Eva Bladt; Bart Goris; Francesca Pietra; Johanna C. van der Bok; Mark P. Boneschanscher; Celso de Mello Donegá; Sara Bals; Daniel̈ Vanmaekelbergh

Currently, ultrathin colloidal CdSe semiconductor nanoplatelets (NPLs) with a uniform thickness that is controllable up to the atomic scale can be prepared. The optical properties of these 2D semiconductor systems are the subject of extensive research. Here, we reveal their natural morphology and atomic arrangement. Using cryo-TEM (cryo-transmission electron microscopy), we show that the shape of rectangular NPLs in solution resembles a helix. Fast incorporation of these NPLs in silica preserves and immobilizes their helical shape, which allowed us to perform an in-depth study by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Electron tomography measurements confirm and detail the helical shape of these systems. Additionally, high-resolution HAADF-STEM shows the thickness of the NPLs on the atomic scale and furthermore that these are consistently folded along a ⟨110⟩ direction. The presence of a silica shell on both the top and bottom surfaces shows that Cd atoms must be accessible for silica precursor (and ligand) molecules on both sides.


Proceedings of SPIE | 2014

Preparation and study of 2-D semiconductors with Dirac type bands due to the honeycomb nanogeometry

E. Kalesaki; Mark P. Boneschanscher; Jaco J. Geuchies; Christophe Delerue; C. Morais Smith; Wiel H. Evers; G. Allan; Thomas Altantzis; Sara Bals; Daniel Vanmaekelbergh

The interest in 2-dimensional systems with a honeycomb lattice and related Dirac-type electronic bands has exceeded the prototype graphene1. Currently, 2-dimensional atomic2,3 and nanoscale4-8 systems are extensively investigated in the search for materials with novel electronic properties that can be tailored by geometry. The immediate question that arises is how to fabricate 2-D semiconductors that have a honeycomb nanogeometry, and as a consequence of that, display a Dirac-type band structure? Here, we show that atomically coherent honeycomb superlattices of rocksalt (PbSe, PbTe) and zincblende (CdSe, CdTe) semiconductors can be obtained by nanocrystal self-assembly and facet-to-facet atomic bonding, and subsequent cation exchange. We present a extended structural analysis of atomically coherent 2-D honeycomb structures that were recently obtained with self-assembly and facet-to-facet bonding9. We show that this process may in principle lead to three different types of honeycomb structures, one with a graphene type-, and two others with a silicene-type structure. Using TEM, electron diffraction, STM and GISAXS it is convincingly shown that the structures are from the silicene-type. In the second part of this work, we describe the electronic structure of graphene-type and silicene type honeycomb semiconductors. We present the results of advanced electronic structure calculations using the sp3d5s* atomistic tight-binding method10. For simplicity, we focus on semiconductors with a simple and single conduction band for the native bulk semiconductor. When the 3-D geometry is changed into 2-D honeycomb, a conduction band structure transformation to two types of Dirac cones, one for S- and one for P-orbitals, is observed. The width of the bands depends on the honeycomb period and the coupling between the nanocrystals. Furthermore, there is a dispersionless P-orbital band, which also forms a landmark of the honeycomb structure. The effects of considerable intrinsic spin-orbit coupling are briefly considered. For heavy-element compounds such as CdTe, strong intrinsic spin-‐orbit coupling opens a non-trivial gap at the P-orbital Dirac point, leading to a quantum Spin Hall effect10-12. Our work shows that well known semiconductor crystals, known for centuries, can lead to systems with entirely new electronic properties, by the simple action of nanogeometry. It can be foreseen that such structures will play a key role in future opto-electronic applications, provided that they can be fabricated in a straightforward way.


Physical Review Letters | 2011

Quantum confined electronic states in atomically well-defined graphene nanostructures

Sampsa K. Hämäläinen; Zhixiang Sun; Mark P. Boneschanscher; Andreas Uppstu; M. Ijäs; Ari Harju; Daniel Vanmaekelbergh; Peter Liljeroth

Collaboration


Dive into the Mark P. Boneschanscher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wiel H. Evers

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Bals

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge