Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Pagani is active.

Publication


Featured researches published by Mark Pagani.


The Open Atmospheric Science Journal | 2008

TARGET ATMOSPHERIC CO2: WHERE SHOULD HUMANITY AIM?

James E. Hansen; Makiko Sato; Pushker A. Kharecha; David J. Beerling; Robert A. Berner; Valérie Masson-Delmotte; Mark Pagani; Maureen E. Raymo; Dana L. Royer; James C. Zachos

Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 450 +/- 100 ppm, a level that will be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similar to that on which civilization developed and to which life on Earth is adapted, paleoclimate evidence and ongoing climate change suggest that CO2 will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the target arises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practices that sequester carbon. If the present overshoot of this target CO2 is not brief, there is a possibility of seeding irreversible catastrophic effects.


Nature | 2006

Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

Appy Sluijs; Stefan Schouten; Mark Pagani; Martijn Woltering; Henk Brinkhuis; Jaap S. Sinninghe Damsté; Gerald R. Dickens; Matthew Huber; Gert-Jan Reichart; Ruediger Stein; Jens Matthiessen; Lucas J. Lourens; Nikolai Pedentchouk; Jan Backman; Kathryn Moran

The Palaeocene/Eocene thermal maximum, ∼55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ∼18 °C to over 23 °C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the oceans bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 °C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms—perhaps polar stratospheric clouds or hurricane-induced ocean mixing—to amplify early Palaeogene polar temperatures.


Science | 2009

Global cooling during the eocene-oligocene climate transition.

Zhonghui Liu; Mark Pagani; David Zinniker; Robert M. DeConto; Matthew Huber; Henk Brinkhuis; Sunita R. Shah; R. Mark Leckie; Ann Pearson

About 34 million years ago, Earths climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earths temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ∼20°C and cooled an average of ∼5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.


Paleoceanography | 1999

Miocene evolution of atmospheric carbon dioxide

Mark Pagani; Michael A. Arthur; Katherine H. Freeman

Changes in pCO2 or ocean circulation are generally invoked to explain warm early Miocene climates and a rapid East Antarctic ice sheet (EAIS) expansion in the middle Miocene. This study reconstructs late Oligocene to late Miocene pCO2 from ep values based on carbon isotopic analyses of diunsaturated alkenones and planktonic foraminifera from Deep Sea Drilling Project sites 588 and 608 and Ocean Drilling Program site 730. Our results indicate that highest pCO2 occurred during the latest Oligocene (∼350 ppmv) but decreased rapidly at ∼25 Ma. The early and middle Miocene was characterized by low pCO2 (260–190 ppmv). Lower intervals of pCO2 correspond to inferred organic carbon burial events and glacial episodes with the lowest concentrations occurring during the middle Miocene. There is no evidence for either high pCO2 during the late early Miocene climatic optimum or a sharp pCO2 decrease associated with EAIS growth. Paradoxically, pCO2 increased following EAIS growth and obtained preindustrial levels by ∼10 Ma. Although we emphasize an oceanographic control on Miocene climate, low pCO2 could have primed the climate system to respond sensitively to changes in heat and vapor transport.


Nature | 2006

Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum

Mark Pagani; Nikolai Pedentchouk; Matthew Huber; Appy Sluijs; Stefan Schouten; Henk Brinkhuis; Jaap S. Sinninghe Damsté; Gerald R. Dickens

The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming ∼55 million years ago, superimposed on an already warm world. This warming is associated with a severe shoaling of the ocean calcite compensation depth and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates. Together these observations indicate a massive release of 13C-depleted carbon and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion—and associated carbon input—was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.


Nature | 2008

Thresholds for Cenozoic bipolar glaciation.

Robert M. DeConto; David Pollard; Paul A. Wilson; Heiko Pälike; Caroline H. Lear; Mark Pagani

The long-standing view of Earth’s Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch (∼33.6 million years ago), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values (Oi-1) within a few hundred thousand years, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling and ice-rafted debris in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO2 levels and the effects of orbital forcing. We show that the CO2 threshold below which glaciation occurs in the Northern Hemisphere (∼280 p.p.m.v.) is much lower than that for Antarctica (∼750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO2 drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies and carbon-cycle models. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 °C and Antarctic ice that is less isotopically depleted (-30 to -35‰) than previously suggested. Proxy CO2 estimates remain above our model’s northern-hemispheric glaciation threshold of ∼280 p.p.m.v. until ∼25 Myr ago, but have been near or below that level ever since. This implies that episodic northern-hemispheric ice sheets have been possible some 20 million years earlier than currently assumed (although still much later than Oi-1) and could explain some of the variability in Miocene sea-level records.


Nature | 2012

Past extreme warming events linked to massive carbon release from thawing permafrost

Robert M. DeConto; Simone Galeotti; Mark Pagani; David Tracy; Kevin Schaefer; Tingjun Zhang; David Pollard; David J. Beerling

Between about 55.5 and 52 million years ago, Earth experienced a series of sudden and extreme global warming events (hyperthermals) superimposed on a long-term warming trend. The first and largest of these events, the Palaeocene–Eocene Thermal Maximum (PETM), is characterized by a massive input of carbon, ocean acidification and an increase in global temperature of about 5 °C within a few thousand years. Although various explanations for the PETM have been proposed, a satisfactory model that accounts for the source, magnitude and timing of carbon release at the PETM and successive hyperthermals remains elusive. Here we use a new astronomically calibrated cyclostratigraphic record from central Italy to show that the Early Eocene hyperthermals occurred during orbits with a combination of high eccentricity and high obliquity. Corresponding climate–ecosystem–soil simulations accounting for rising concentrations of background greenhouse gases and orbital forcing show that the magnitude and timing of the PETM and subsequent hyperthermals can be explained by the orbitally triggered decomposition of soil organic carbon in circum-Arctic and Antarctic terrestrial permafrost. This massive carbon reservoir had the potential to repeatedly release thousands of petagrams (1015 grams) of carbon to the atmosphere–ocean system, once a long-term warming threshold had been reached just before the PETM. Replenishment of permafrost soil carbon stocks following peak warming probably contributed to the rapid recovery from each event, while providing a sensitive carbon reservoir for the next hyperthermal. As background temperatures continued to rise following the PETM, the areal extent of permafrost steadily declined, resulting in an incrementally smaller available carbon pool and smaller hyperthermals at each successive orbital forcing maximum. A mechanism linking Earth’s orbital properties with release of soil carbon from permafrost provides a unifying model accounting for the salient features of the hyperthermals.


Science | 2011

The role of carbon dioxide during the onset of Antarctic glaciation

Mark Pagani; Matthew Huber; Zhonghui Liu; Steven M. Bohaty; Jorijntje Henderiks; Willem P. Sijp; Srinath Krishnan; Robert M. DeConto

Antarctica glaciation began soon after a large decrease in the concentration of atmospheric carbon dioxide around 35 million years ago. Earth’s modern climate, characterized by polar ice sheets and large equator-to-pole temperature gradients, is rooted in environmental changes that promoted Antarctic glaciation ~33.7 million years ago. Onset of Antarctic glaciation reflects a critical tipping point for Earth’s climate and provides a framework for investigating the role of atmospheric carbon dioxide (CO2) during major climatic change. Previously published records of alkenone-based CO2 from high- and low-latitude ocean localities suggested that CO2 increased during glaciation, in contradiction to theory. Here, we further investigate alkenone records and demonstrate that Antarctic and subantarctic data overestimate atmospheric CO2 levels, biasing long-term trends. Our results show that CO2 declined before and during Antarctic glaciation and support a substantial CO2 decrease as the primary agent forcing Antarctic glaciation, consistent with model-derived CO2 thresholds.


Philosophical Transactions of the Royal Society A | 2013

A 40-million-year history of atmospheric CO2

Yi Ge Zhang; Mark Pagani; Zhonghui Liu; Steven M. Bohaty; Robert M. DeConto

The alkenone–pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earths history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 results. In this study, we present a pCO2 record spanning the past 40 million years from a single marine locality, Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The trends and absolute values of our new CO2 record site are broadly consistent with previously published multi-site alkenone–CO2 results. However, new pCO2 estimates for the Middle Miocene are notably higher than published records, with average pCO2 concentrations in the range of 400–500 ppm. Our results are generally consistent with recent pCO2 estimates based on boron isotope-pH data and stomatal index records, and suggest that CO2 levels were highest during a period of global warmth associated with the Middle Miocene Climatic Optimum (17–14 million years ago, Ma), followed by a decline in CO2 during the Middle Miocene Climate Transition (approx. 14 Ma). Several relationships remain contrary to expectations. For example, benthic foraminiferal δ18O records suggest a period of deglaciation and/or high-latitude warming during the latest Oligocene (27–23 Ma) that, based on our results, occurred concurrently with a long-term decrease in CO2 levels. Additionally, a large positive δ18O excursion near the Oligocene–Miocene boundary (the Mi-1 event, approx. 23 Ma), assumed to represent a period of glacial advance and retreat on Antarctica, is difficult to explain by our CO2 record alone given what is known of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet once it has grown to continental dimensions. We also demonstrate that in the Neogene with low CO2 levels, algal carbon concentrating mechanisms and spontaneous biocarbonate–CO2 conversions are likely to play a more important role in algal carbon fixation, which provides a potential bias to the alkenone–pCO2 method.


Nature | 2012

Making sense of palaeoclimate sensitivity

Eelco J. Rohling; Appy Sluijs; Henk A. Dijkstra; Peter Köhler; R. S. W. van de Wal; A.S. von der Heydt; David J. Beerling; André Berger; Peter K. Bijl; Michel Crucifix; Robert M. DeConto; Sybren S. Drijfhout; A. Fedorov; Gavin L. Foster; A. Ganapolski; James E. Hansen; Bärbel Hönisch; H. Hooghiemstra; Matthew Huber; Peter John Huybers; Reto Knutti; David W. Lea; Lucas J. Lourens; Daniel J. Lunt; V. Masson-Demotte; Martín Medina-Elizalde; Bette L. Otto-Bliesner; Mark Pagani; Heiko Pälike; H. Renssen

Many palaeoclimate studies have quantified pre-anthropogenic climate change to calculate climate sensitivity (equilibrium temperature change in response to radiative forcing change), but a lack of consistent methodologies produces a wide range of estimates and hinders comparability of results. Here we present a stricter approach, to improve intercomparison of palaeoclimate sensitivity estimates in a manner compatible with equilibrium projections for future climate change. Over the past 65 million years, this reveals a climate sensitivity (in K W−1 m2) of 0.3–1.9 or 0.6–1.3 at 95% or 68% probability, respectively. The latter implies a warming of 2.2–4.8 K per doubling of atmospheric CO2, which agrees with IPCC estimates.

Collaboration


Dive into the Mark Pagani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Schouten

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhonghui Liu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Katherine H. Freeman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Robert M. DeConto

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge