Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew V. Biankin is active.

Publication


Featured researches published by Andrew V. Biankin.


Nature | 2013

Signatures of mutational processes in human cancer

Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Samuel Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolo Bolli; Åke Borg; Anne Lise Børresen-Dale; Sandrine Boyault; Birgit Burkhardt; Adam Butler; Carlos Caldas; Helen Davies; Christine Desmedt; Roland Eils; Jórunn Erla Eyfjörd; John A. Foekens; Mel Greaves; Fumie Hosoda; Barbara Hutter; Tomislav Ilicic; Sandrine Imbeaud; Marcin Imielinsk; Natalie Jäger; David T. W. Jones; David Jones; Stian Knappskog; Marcel Kool

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


The American Journal of Surgical Pathology | 2004

An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms

Ralph H. Hruban; Kyoichi Takaori; David S. Klimstra; N. Volkan Adsay; Jorge Albores-Saavedra; Andrew V. Biankin; Sandra A. Biankin; Carolyn C. Compton; Noriyoshi Fukushima; Toru Furukawa; Michael Goggins; Yo Kato; Günter Klöppel; Daniel S. Longnecker; Jutta Lüttges; Anirban Maitra; G. Johan A. Offerhaus; Michio Shimizu; Suguru Yonezawa

Invasive pancreatic ductal adenocarcinoma is an almost uniformly fatal disease. Several distinct noninvasive precursor lesions can give rise to invasive adenocarcinoma of the pancreas, and the prevention, detection, and treatment of these noninvasive lesions offers the potential to cure early pancreatic cancers. Noninvasive precursors of invasive ductal adenocarcinoma of the pancreas include pancreatic intraepithelial neoplasias (PanINs), intraductal papillary mucinous neoplasms (IPMNs), and mucinous cystic neoplasms. Diagnostic criteria, including a distinct ovarian-type stroma, and a consistent nomenclature are well established for mucinous cystic neoplasms. By contrast, consistent nomenclatures and diagnostic criteria have been more difficult to establish for PanINs and IPMNs. Because both PanINs and IPMNs consist of intraductal neoplastic proliferations of columnar, mucin-containing cells with a variable degree of papilla formation, the distinction between these two classes of precursor lesions remains problematic. Thus, considerable ambiguities still exist in the classification of noninvasive neoplasms in the pancreatic ducts. A meeting of international experts on precursor lesions of pancreatic cancer was held at The Johns Hopkins Hospital from August 18 to 19, 2003. The purpose of this meeting was to define an international acceptable set of diagnostic criteria for PanINs and IPMNs and to address a number of ambiguities that exist in the previously reported classification systems for these neoplasms. We present a consensus classification of the precursor lesions in the pancreatic ducts, PanINs and IPMNs.


Nature | 2015

Whole genomes redefine the mutational landscape of pancreatic cancer

Nicola Waddell; Marina Pajic; Ann-Marie Patch; David K. Chang; Karin S. Kassahn; Peter Bailey; Amber L. Johns; David Miller; Katia Nones; Kelly Quek; Michael Quinn; Alan Robertson; Muhammad Z.H. Fadlullah; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Senel Idrisoglu; Suzanne Manning; Craig Nourse; Ehsan Nourbakhsh; Shivangi Wani; Peter J. Wilson; Emma Markham; Nicole Cloonan; Matthew J. Anderson; J. Lynn Fink; Oliver Holmes; Stephen Kazakoff; Conrad Leonard; Felicity Newell

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Cancer Discovery | 2014

Patient-Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

Manuel Hidalgo; Frédéric Amant; Andrew V. Biankin; Eva Budinská; Annette T. Byrne; Carlos Caldas; Robert B. Clarke; Steven de Jong; Jos Jonkers; Gunhild M. Mælandsmo; Sergio Roman-Roman; Joan Seoane; Livio Trusolino; Alberto Villanueva

UNLABELLED Recently, there has been an increasing interest in the development and characterization of patient-derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histologic and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biologic studies, and personalized medicine strategies. This article summarizes the current state of the art in this field, including methodologic issues, available collections, practical applications, challenges and shortcomings, and future directions, and introduces a European consortium of PDX models. SIGNIFICANCE PDX models are increasingly used in translational cancer research. These models are useful for drug screening, biomarker development, and the preclinical evaluation of personalized medicine strategies. This review provides a timely overview of the key characteristics of PDX models and a detailed discussion of future directions in the field.


Cancer Research | 2006

Pathology of Genetically Engineered Mouse Models of Pancreatic Exocrine Cancer: Consensus Report and Recommendations

Ralph H. Hruban; N. Volkan Adsay; Jorge Albores-Saavedra; Miriam R. Anver; Andrew V. Biankin; Gregory P. Boivin; Emma E. Furth; Toru Furukawa; Alison P. Klein; David S. Klimstra; Günter Klöppel; Gregory Y. Lauwers; Daniel S. Longnecker; Jutta Lüttges; Anirban Maitra; G. Johan A. Offerhaus; Lucía Pérez-Gallego; Mark Redston; David A. Tuveson

Several diverse genetically engineered mouse models of pancreatic exocrine neoplasia have been developed. These mouse models have a spectrum of pathologic changes; however, until now, there has been no uniform nomenclature to characterize these changes. An international workshop, sponsored by The National Cancer Institute and the University of Pennsylvania, was held from December 1 to 3, 2004 with the goal of establishing an internationally accepted uniform nomenclature for the pathology of genetically engineered mouse models of pancreatic exocrine neoplasia. The pancreatic pathology in 12 existing mouse models of pancreatic neoplasia was reviewed at this workshop, and a standardized nomenclature with definitions and associated images was developed. It is our intention that this nomenclature will standardize the reporting of genetically engineered mouse models of pancreatic exocrine neoplasia, that it will facilitate comparisons between genetically engineered mouse models and human pancreatic disease, and that it will be broad enough to accommodate newly emerging mouse models of pancreatic neoplasia.


Cell Stem Cell | 2011

Adult Cardiac-Resident MSC-like Stem Cells with a Proepicardial Origin

James J.H. Chong; Vashe Chandrakanthan; Munira Xaymardan; Naisana S. Asli; Joan Li; Ishtiaq Ahmed; Corey Heffernan; Mary K. Menon; Christopher J. Scarlett; Amirsalar Rashidianfar; Christine Biben; Hans Zoellner; Emily K. Colvin; John E. Pimanda; Andrew V. Biankin; Bin Zhou; William T. Pu; Owen W.J. Prall; Richard P. Harvey

Colony-forming units - fibroblast (CFU-Fs), analogous to those giving rise to bone marrow (BM) mesenchymal stem cells (MSCs), are present in many organs, although the relationship between BM and organ-specific CFU-Fs in homeostasis and tissue repair is unknown. Here we describe a population of adult cardiac-resident CFU-Fs (cCFU-Fs) that occupy a perivascular, adventitial niche and show broad trans-germ layer potency in vitro and in vivo. CRE lineage tracing and embryo analysis demonstrated a proepicardial origin for cCFU-Fs. Furthermore, in BM transplantation chimeras, we found no interchange between BM and cCFU-Fs after aging, myocardial infarction, or BM stem cell mobilization. BM and cardiac and aortic CFU-Fs had distinct CRE lineage signatures, indicating that they arise from different progenitor beds during development. These diverse origins for CFU-Fs suggest an underlying basis for differentiation biases seen in different CFU-F populations, and could also influence their capacity for participating in tissue repair.


Cancer Research | 2005

Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells

Nijaguna B. Prasad; Andrew V. Biankin; Noriyoshi Fukushima; Anirban Maitra; Surajit Dhara; Abdel G. Elkahloun; Ralph H. Hruban; Michael Goggins; Steven D. Leach

Invasive pancreatic cancer is thought to develop through a series of noninvasive duct lesions known as pancreatic intraepithelial neoplasia (PanIN). We used cDNA microarrays interrogating 15,000 transcripts to identify 49 genes that were differentially expressed in microdissected early PanIN lesions (PanIN-1B/2) compared with microdissected normal duct epithelium. In this analysis, a cluster of extrapancreatic foregut markers, including pepsinogen C, MUC6, KLF4, and TFF1, was found to be up-regulated in PanIN. Up-regulation of these genes was further validated using combinations of real-time reverse transcription-PCR, in situ hybridization, and immunohistochemistry in a total of 150 early PanIN lesions from 81 patients. Identification of these gastrointestinal transcripts in human PanIN prompted assessment of other foregut markers by both semiquantitative and real-time reverse transcription-PCR, revealing similar up-regulation of Sox-2, Gastrin, HoxA5, GATA4/5/6, Villin and Forkhead 6 (Foxl1). In contrast to frequent expression of multiple gastric epithelial markers, the intestinal markers intestinal fatty acid binding protein, CDX1 and CDX2 were rarely expressed either in PanIN lesions or in invasive pancreatic cancer. Hedgehog pathway activation induced by transfection of immortalized human pancreatic ductal epithelial cells with Gli1 resulted in up-regulation of the majority of foregut markers seen in early PanIN lesions. These data show frequent up-regulation of foregut markers in early PanIN lesions and suggest that PanIN development may involve Hedgehog-mediated conversion to a gastric epithelial differentiation program.


Development | 2004

Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas

Farzad Esni; Bidyut Ghosh; Andrew V. Biankin; John W. Lin; Megan A. Albert; Xiaobing Yu; Raymond J. MacDonald; Curt I. Civin; Francisco X. Real; Michael Pack; Douglas W. Ball; Steven D. Leach

Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regulating subsequent exocrine differentiation events. Here, we show that activated Notch and Notch target genes actively repress completion of an acinar cell differentiation program in developing mouse and zebrafish pancreas. In developing mouse pancreas, the Notch target gene Hes1 is co-expressed with Ptf1-P48 in exocrine precursor cells, but not in differentiated amylase-positive acinar cells. Using lentiviral delivery systems to induce ectopic Notch pathway activation in explant cultures of E10.5 mouse dorsal pancreatic buds, we found that both Hes1 and Notch1-IC repress acinar cell differentiation, but not Ptf1-P48 expression, in a cell-autonomous manner. Ectopic Notch activation also delays acinar cell differentiation in developing zebrafish pancreas. Further evidence of a role for endogenous Notch in regulating exocrine pancreatic differentiation was provided by examination of zebrafish embryos with homozygous mindbomb mutations, in which Notch signaling is disrupted. mindbomb-deficient embryos display accelerated differentiation of exocrine pancreas relative to wild-type clutchmate controls. A similar phenotype was induced by expression of a dominant-negative Suppressor of Hairless [Su(H)] construct, confirming that Notch actively represses acinar cell differentiation during zebrafish pancreatic development. Using transient transfection assays involving a Ptf1-responsive reporter gene, we further demonstrate that Notch and Notch/Su(H) target genes directly inhibit Ptf1 activity, independent of changes in expression of Ptf1 component proteins. These results define a normal inhibitory role for Notch in the regulation of exocrine pancreatic differentiation.


Journal of Clinical Oncology | 2009

Margin Clearance and Outcome in Resected Pancreatic Cancer

David K. Chang; Amber L. Johns; Neil D. Merrett; Anthony J. Gill; Emily K. Colvin; Christopher J. Scarlett; Nam Q. Nguyen; Rupert W. Leong; Peter H. Cosman; Mark I. Kelly; Robert L. Sutherland; Susan M. Henshall; James G. Kench; Andrew V. Biankin

PURPOSE Current adjuvant therapies for pancreatic cancer (PC) are inconsistently used and only modestly effective. Because a high proportion of patients who undergo resection for PC likely harbor occult metastatic disease, any adjuvant trials assessing therapies such as radiotherapy directed at locoregional disease are significantly underpowered. Stratification based on the probability (and volume) of residual locoregional disease could play an important role in the design of future clinical trials assessing adjuvant radiotherapy. PATIENTS AND METHODS We assessed the relationships between margin involvement, the proximity to operative resection margins and outcome in a cohort of 365 patients who underwent operative resection for PC. RESULTS Microscopic involvement of a resection margin by tumor was associated with a poor prognosis. Stratifying the minimum clearance of resection margins by 0.5-mm increments demonstrated that although median survival was no different to clear margins based on these definitions, it was not until the resection margin was clear by more than 1.5 mm that optimal long-term survival was achieved. CONCLUSION These data demonstrate that a margin clearance of more than 1.5 mm is important for long-term survival in a subgroup of patients. More aggressive therapeutic approaches that target locoregional disease such as radiotherapy may be beneficial in patients with close surgical margins. Stratification of patients for entry onto future clinical trials based on this criterion may identify those patients who benefit from adjuvant radiotherapy.


Nucleic Acids Research | 2012

PINA v2.0: mining interactome modules

Mark J. Cowley; Mark Pinese; Karin S. Kassahn; Nic Waddell; John V. Pearson; Sean M. Grimmond; Andrew V. Biankin; Sampsa Hautaniemi; Jianmin Wu

The Protein Interaction Network Analysis (PINA) platform is a comprehensive web resource, which includes a database of unified protein–protein interaction data integrated from six manually curated public databases, and a set of built-in tools for network construction, filtering, analysis and visualization. The second version of PINA enhances its utility for studies of protein interactions at a network level, by including multiple collections of interaction modules identified by different clustering approaches from the whole network of protein interactions (‘interactome’) for six model organisms. All identified modules are fully annotated by enriched Gene Ontology terms, KEGG pathways, Pfam domains and the chemical and genetic perturbations collection from MSigDB. Moreover, a new tool is provided for module enrichment analysis in addition to simple query function. The interactome data are also available on the web site for further bioinformatics analysis. PINA is freely accessible at http://cbg.garvan.unsw.edu.au/pina/.

Collaboration


Dive into the Andrew V. Biankin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber L. Johns

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Kench

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar

Mark Pinese

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Marina Pajic

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert L. Sutherland

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Gill

Kolling Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge