Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Ravinet is active.

Publication


Featured researches published by Mark Ravinet.


Molecular Ecology | 2016

Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale

Mark Ravinet; Anja Marie Westram; Kerstin Johannesson; Roger K. Butlin; Carl André; Marina Panova

Parallel speciation occurs when selection drives repeated, independent adaptive divergence that reduces gene flow between ecotypes. Classical examples show parallel speciation originating from shared genomic variation, but this does not seem to be the case in the rough periwinkle (Littorina saxatilis) that has evolved considerable phenotypic diversity across Europe, including several distinct ecotypes. Small ‘wave’ ecotype snails inhabit exposed rocks and experience strong wave action, while thick‐shelled, ‘crab’ ecotype snails are larger and experience crab predation on less exposed shores. Crab and wave ecotypes appear to have arisen in parallel, and recent evidence suggests only marginal sharing of molecular variation linked to evolution of similar ecotypes in different parts of Europe. However, the extent of genomic sharing is expected to increase with gene flow and more recent common ancestry. To test this, we used de novo RAD‐sequencing to quantify the extent of shared genomic divergence associated with phenotypic similarities amongst ecotype pairs on three close islands (<10 km distance) connected by weak gene flow (Nm ~ 0.03) and with recent common ancestry (<10 000 years). After accounting for technical issues, including a large proportion of null alleles due to a large effective population size, we found ~8–28% of positive outliers were shared between two islands and ~2–9% were shared amongst all three islands. This low level of sharing suggests that parallel phenotypic divergence in this system is not matched by shared genomic divergence despite a high probability of gene flow and standing genetic variation.


Journal of Evolutionary Biology | 2013

Parallel and nonparallel ecological, morphological and genetic divergence in lake-stream stickleback from a single catchment

Mark Ravinet; Paulo A. Prodöhl; Chris Harrod

Parallel phenotypic evolution in similar environments has been well studied in evolutionary biology; however, comparatively little is known about the influence of determinism and historical contingency on the nature, extent and generality of this divergence. Taking advantage of a novel system containing multiple lake–stream stickleback populations, we examined the extent of ecological, morphological and genetic divergence between three‐spined stickleback present in parapatric environments. Consistent with other lake–stream studies, we found a shift towards a deeper body and shorter gill rakers in stream fish. Morphological shifts were concurrent with changes in diet, indicated by both stable isotope and stomach contents analysis. Performing a multivariate test for shared and unique components of evolutionary response to the distance gradient from the lake, we found a strong signature of parallel adaptation. Nonparallel divergence was also present, attributable mainly to differences between river locations. We additionally found evidence of genetic substructuring across five lake–stream transitions, indicating that some level of reproductive isolation occurs between populations in these habitats. Strong correlations between pairwise measures of morphological, ecological and genetic distance between lake and stream populations supports the hypothesis that divergent natural selection between habitats drives adaptive divergence and reproductive isolation. Lake–stream stickleback divergence in Lough Neagh provides evidence for the deterministic role of selection and supports the hypothesis that parallel selection in similar environments may initiate parallel speciation.


Journal of Evolutionary Biology | 2017

Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow

Mark Ravinet; Rui Faria; Roger K. Butlin; Juan Galindo; Nicolas Bierne; Marina Rafajlović; Mohamed A. F. Noor; B. Mehlig; Anja Marie Westram

Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation.


Nature Ecology and Evolution | 2017

Contrasting effects of environment and genetics generate a continuum of parallel evolution

Yoel E. Stuart; Thor Veen; Jesse N. Weber; Dieta Hanson; Mark Ravinet; Brian K. Lohman; Cole Thompson; Tania Tasneem; Andrew Doggett; Rebecca Izen; Newaz I. Ahmed; Rowan D. H. Barrett; Andrew P. Hendry; Catherine L. Peichel; Daniel I. Bolnick

Parallel evolution of similar traits by independent populations in similar environments is considered strong evidence for adaptation by natural selection. Often, however, replicate populations in similar environments do not all evolve in the same way, thus deviating from any single, predominant outcome of evolution. This variation might arise from non-adaptive, population-specific effects of genetic drift, gene flow or limited genetic variation. Alternatively, these deviations from parallel evolution might also reflect predictable adaptation to cryptic environmental heterogeneity within discrete habitat categories. Here, we show that deviations from parallel evolution are the consequence of environmental variation within habitats combined with variation in gene flow. Threespine stickleback (Gasterosteus aculeatus) in adjoining lake and stream habitats (a lake–stream ‘pair’) diverge phenotypically, yet the direction and magnitude of this divergence is not always fully parallel among 16 replicate pairs. We found that the multivariate direction of lake–stream morphological divergence was less parallel between pairs whose environmental differences were less parallel. Thus, environmental heterogeneity among lake–stream pairs contributes to deviations from parallel evolution. Additionally, likely genomic targets of selection were more parallel between environmentally more similar pairs. In contrast, variation in the magnitude of lake–stream divergence (independent of direction) was better explained by differences in lake–stream gene flow; pairs with greater lake–stream gene flow were less morphologically diverged. Thus, both adaptive and non-adaptive processes work concurrently to generate a continuum of parallel evolution across lake–stream stickleback population pairs.


Science Advances | 2017

The genomic mosaicism of hybrid speciation.

Tore O. Elgvin; Cassandra Trier; Ole Kristian Tørresen; Ingerid Julie Hagen; Sigbjørn Lien; Mark Ravinet; Henrik Jensen; Glenn-Peter Sætre

Genomic mosaicism and novel divergence have facilitated the creation and maintenance of a hybrid species, the Italian sparrow. Hybridization is widespread in nature and, in some instances, can result in the formation of a new hybrid species. We investigate the genetic foundation of this poorly understood process through whole-genome analysis of the hybrid Italian sparrow and its progenitors. We find overall balanced yet heterogeneous levels of contribution from each parent species throughout the hybrid genome and identify areas of novel divergence in the hybrid species exhibiting signals consistent with balancing selection. High-divergence areas are disproportionately located on the Z chromosome and overrepresented in gene networks relating to key traits separating the focal species, which are likely involved in reproductive barriers and/or species-specific adaptations. Of special interest are genes and functional groups known to affect body patterning, beak morphology, and the immune system, which are important features of diversification and fitness. We show that a combination of mosaic parental inheritance and novel divergence within the hybrid lineage has facilitated the origin and maintenance of an avian hybrid species.


Molecular Ecology | 2017

Genetic basis for variation in salinity tolerance between stickleback ecotypes.

Makoto Kusakabe; Asano Ishikawa; Mark Ravinet; Kohta Yoshida; Takashi Makino; Atsushi Toyoda; Asao Fujiyama; Jun Kitano

Adaptation to different salinities can drive and maintain divergence between populations of aquatic organisms. Anadromous and stream ecotypes of threespine stickleback (Gasterosteus aculeatus) are an excellent model to explore the genetic mechanisms underlying osmoregulation divergence. Using a parapatric pair of anadromous and stream stickleback ecotypes, we employed an integrated genomic approach to identify candidate genes important for adaptation to different salinity environments. Quantitative trait loci (QTL) mapping of plasma sodium concentrations under a seawater challenge experiment identified a significant QTL on chromosome 16. To identify candidate genes within this QTL, we first conducted RNA‐seq and microarray analysis on gill tissue to find ecotypic differences in gene expression that were associated with plasma Na+ levels. This resulted in the identification of ten candidate genes. Quantitative PCR analysis on gill tissue of additional Japanese stickleback populations revealed that the majority of the candidate genes showed parallel divergence in expression levels. Second, we conducted whole‐genome sequencing and found five genes that are predicted to have functionally important amino acid substitutions. Finally, we conducted genome scan analysis and found that eight of these candidate genes were located in genomic islands of high differentiation, suggesting that they may be under divergent selection. The candidate genes included those involved in ATP synthesis and hormonal signalling, whose expression or amino acid changes may underlie the variation in salinity tolerance. Further functional molecular analysis of these genes will reveal the causative genetic and genomic changes underlying divergent adaptation.


Evolution | 2017

Different contributions of local‐ and distant‐regulatory changes to transcriptome divergence between stickleback ecotypes

Asano Ishikawa; Makoto Kusakabe; Kohta Yoshida; Mark Ravinet; Takashi Makino; Atsushi Toyoda; Asao Fujiyama; Jun Kitano

Differential gene expression can play an important role in phenotypic evolution and divergent adaptation. Although differential gene expression can be caused by both local‐ and distant‐regulatory changes, we know little about their relative contribution to transcriptome evolution in natural populations. Here, we conducted expression quantitative trait loci (eQTL) analysis to investigate the genetic architecture underlying transcriptome divergence between marine and stream ecotypes of threespine sticklebacks (Gasterosteus aculeatus). We identified both local and distant eQTLs, some of which constitute hotspots, regions with a disproportionate number of significant eQTLs relative to the genomic background. The majority of local eQTLs including those in the hotspots caused expression changes consistent with the direction of transcriptomic divergence between ecotypes. Genome scan analysis showed that many local eQTLs overlapped with genomic regions of high differentiation. In contrast, nearly half of the distant eQTLs including those in the hotspots caused opposite expression changes, and few overlapped with regions of high differentiation, indicating that distant eQTLs may act as a constraint of transcriptome evolution. Finally, a comparison between two salinity conditions revealed that nearly half of eQTL hotspots were environment specific, suggesting that analysis of genetic architecture in multiple conditions is essential for predicting response to selection.


PLOS ONE | 2014

Comparative Analysis of Japanese Three-Spined Stickleback Clades Reveals the Pacific Ocean Lineage Has Adapted to Freshwater Environments while the Japan Sea Has Not

Mark Ravinet; Naoko Takeuchi; Manabu Kume; Seiichi Mori; Jun Kitano

Divergent selection and adaptive divergence can increase phenotypic diversification amongst populations and lineages. Yet adaptive divergence between different environments, habitats or niches does not occur in all lineages. For example, the colonization of freshwater environments by ancestral marine species has triggered adaptive radiation and phenotypic diversification in some taxa but not in others. Studying closely related lineages differing in their ability to diversify is an excellent means of understanding the factors promoting and constraining adaptive evolution. A well-known example of the evolution of increased phenotypic diversification following freshwater colonization is the three-spined stickleback. Two closely related stickleback lineages, the Pacific Ocean and the Japan Sea occur in Japan. However, Japanese freshwater stickleback populations are derived from the Pacific Ocean lineage only, suggesting the Japan Sea lineage is unable to colonize freshwater. Using stable isotope data and trophic morphology, we first show higher rates of phenotypic and ecological diversification between marine and freshwater populations within the Pacific Ocean lineage, confirming adaptive divergence has occurred between the two lineages and within the Pacific Ocean lineage but not in the Japan Sea lineage. We further identified consistent divergence in diet and foraging behaviour between marine forms from each lineage, confirming Pacific Ocean marine sticklebacks, from which all Japanese freshwater populations are derived, are better adapted to freshwater environments than Japan Sea sticklebacks. We suggest adaptive divergence between ancestral marine populations may have played a role in constraining phenotypic diversification and adaptive evolution in Japanese sticklebacks.


Ecology and Evolution | 2014

Unique mitochondrial DNA lineages in Irish stickleback populations: cryptic refugium or rapid recolonization?

Mark Ravinet; Chris Harrod; Christophe Eizaguirre; Paulo A. Prodöhl

Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.


Nature Ecology and Evolution | 2018

Variation and constraints in hybrid genome formation

Anna Runemark; Cassandra Trier; Fabrice Eroukhmanoff; Jo S. Hermansen; Michael Matschiner; Mark Ravinet; Tore O. Elgvin; Glenn-Peter Sætre

Hybridization is an important source of variation; it transfers adaptive genetic variation across species boundaries and generates new species. Yet, the limits to viable hybrid genome formation are poorly understood. Here we investigated to what extent hybrid genomes are free to evolve by sequencing the genomes of four island populations of the homoploid hybrid Italian sparrow Passer italiae. We report that a variety of novel and fully functional hybrid genomic combinations are likely to have arisen independently on Crete, Corsica, Sicily and Malta, with differentiation in candidate genes for beak shape and plumage colour. However, certain genomic regions are invariably inherited from the same parent species, limiting variation. These regions are over-represented on the Z chromosome and harbour candidate incompatibility loci, including DNA-repair and mitonuclear genes. These gene classes may contribute to the general reduction of introgression on sex chromosomes. This study demonstrates that hybrid genomes may vary, and identifies new candidate reproductive isolation genes.Hybridization is an important evolutionary process. Here, the authors study isolated populations of the hybrid Italian sparrow and identify several novel and fully functional hybrid genomic combinations that arose independently in different islands.

Collaboration


Dive into the Mark Ravinet's collaboration.

Top Co-Authors

Avatar

Jun Kitano

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kohta Yoshida

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Chris Harrod

University of Antofagasta

View shared research outputs
Top Co-Authors

Avatar

Paulo A. Prodöhl

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Rui Faria

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge