Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Stahlhut is active.

Publication


Featured researches published by Mark Stahlhut.


Journal of Biological Chemistry | 2003

Inhibition of Hepatitis C Virus RNA Replication by 2′-Modified Nucleoside Analogs

Steven S. Carroll; Joanne E. Tomassini; Michele Bosserman; Krista Getty; Mark Stahlhut; Anne B. Eldrup; Balkrishen Bhat; Dawn L. Hall; Amy L. Simcoe; Robert L. Lafemina; Carrie A. Rutkowski; Bohdan Wolanski; Zhucheng Yang; Giovanni Migliaccio; Raffaele De Francesco; Lawrence C. Kuo; Malcolm Maccoss; David B. Olsen

The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is essential for the replication of viral RNA and thus constitutes a valid target for the chemotherapeutic intervention of HCV infection. In this report, we describe the identification of 2′-substituted nucleosides as inhibitors of HCV replication. The 5′-triphosphates of 2′-C-methyladenosine and 2′-O-methylcytidine are found to inhibit NS5B-catalyzed RNA synthesis in vitro, in a manner that is competitive with substrate nucleoside triphosphate. NS5B is able to incorporate either nucleotide analog into RNA as determined with gel-based incorporation assays but is impaired in its ability to extend the incorporated analog by addition of the next nucleotide. In a subgenomic replicon cell line, 2-C-methyladenosine and 2′-O-methylcytidine inhibit HCV RNA replication. The 5′-triphosphates of both nucleosides are detected intracellularly following addition of the nucleosides to the media. However, significantly higher concentrations of 2′-C-methyladenosine triphosphate than 2′-O-methylcytidine triphosphate are detected, consistent with the greater potency of 2′-C-methyladenosine in the replicon assay, despite similar inhibition of NS5B by the triphosphates in the in vitroenzyme assays. Thus, the 2′-modifications of natural substrate nucleosides transform these molecules into potent inhibitors of HCV replication.


Antimicrobial Agents and Chemotherapy | 2004

A 7-Deaza-Adenosine Analog Is a Potent and Selective Inhibitor of Hepatitis C Virus Replication with Excellent Pharmacokinetic Properties

David B. Olsen; Anne B. Eldrup; Linda Bartholomew; Balkrishen Bhat; Michele Bosserman; Alessandra Ceccacci; Lawrence F. Colwell; John F. Fay; Osvaldo A. Flores; Krista Getty; Jay A. Grobler; Robert L. Lafemina; Eric J. Markel; Giovanni Migliaccio; Marija Prhavc; Mark Stahlhut; Joanne E. Tomassini; Malcolm Maccoss; Daria J. Hazuda; Steven S. Carroll

ABSTRACT Improved treatments for chronic hepatitis C virus (HCV) infection are needed due to the suboptimal response rates and deleterious side effects associated with current treatment options. The triphosphates of 2′-C-methyl-adenosine and 2′-C-methyl-guanosine were previously shown to be potent inhibitors of the HCV RNA-dependent RNA polymerase (RdRp) that is responsible for the replication of viral RNA in cells. Here we demonstrate that the inclusion of a 7-deaza modification in a series of purine nucleoside triphosphates results in an increase in inhibitory potency against the HCV RdRp and improved pharmacokinetic properties. Notably, incorporation of the 7-deaza modification into 2′-C-methyl-adenosine results in an inhibitor with a 20-fold-increased potency as the 5′-triphosphate in HCV RdRp assays while maintaining the inhibitory potency of the nucleoside in the bicistronic HCV replicon and with reduced cellular toxicity. In contrast, while 7-deaza-2′-C-methyl-GTP also displays enhanced inhibitory potency in enzyme assays, due to poor cellular penetration and/or metabolism, the nucleoside does not inhibit replication of a bicistronic HCV replicon in cell culture. 7-Deaza-2′-C-methyl-adenosine displays promising in vivo pharmacokinetics in three animal species, as well as an acute oral lethal dose in excess of 2,000 mg/kg of body weight in mice. Taken together, these data demonstrate that 7-deaza-2′-C-methyl-adenosine is an attractive candidate for further investigation as a potential treatment for HCV infection.


Journal of Medicinal Chemistry | 2010

Discovery of Vaniprevir (MK-7009), a Macrocyclic Hepatitis C Virus NS3/4a Protease Inhibitor

John A. McCauley; Charles J. Mcintyre; Michael T. Rudd; Kevin Nguyen; Joseph J. Romano; John W. Butcher; Kevin F. Gilbert; Kimberly J. Bush; M. Katharine Holloway; John Swestock; Bang-Lin Wan; Steven S. Carroll; Jillian DiMuzio; Donald J. Graham; Steven W. Ludmerer; Shi-Shan Mao; Mark Stahlhut; Christine Fandozzi; Nicole Trainor; David B. Olsen; Joseph P. Vacca; Nigel J. Liverton

A new class of HCV NS3/4a protease inhibitors which contain a P2 to P4 macrocyclic constraint was designed using a molecular-modeling derived strategy. Exploration of the P2 heterocyclic region, the P2 to P4 linker, and the P1 side chain of this class of compounds via a modular synthetic strategy allowed for the optimization of enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 35b (vaniprevir, MK-7009), which is active against both the genotype 1 and genotype 2 NS3/4a protease enzymes and has good plasma exposure and excellent liver exposure in multiple species.


Antimicrobial Agents and Chemotherapy | 2010

MK-7009, a Potent and Selective Inhibitor of Hepatitis C Virus NS3/4A Protease

Nigel J. Liverton; Steven S. Carroll; Jillian DiMuzio; Christine Fandozzi; Donald J. Graham; Daria J. Hazuda; M. Katherine Holloway; Steven W. Ludmerer; John A. McCauley; Charles J. Mcintyre; David B. Olsen; Michael T. Rudd; Mark Stahlhut; Joseph P. Vacca

ABSTRACT The administration of hepatitis C virus (HCV) NS3/4A protease inhibitors to patients with chronic HCV infections has demonstrated that they have dramatic antiviral effects and that compounds acting via this mechanism are likely to form a key component of future anti-HCV therapy. We report here on the preclinical profile of MK-7009, an inhibitor of genotype 1a and 1b proteases at subnanomolar concentrations with modestly shifted potency against genotype 2a and 2b proteases at low nanomolar concentrations. Potent activity was also observed in a cell-based HCV replicon assay in the presence of added human serum (50%). In multiple species evaluated in preclinical studies, the MK-7009 concentrations in the liver were maintained at a significant multiple of the cell-based replicon 50% effective concentration over 12 to 24 h following the administration of moderate oral doses (5 to 10 mg per kg of body weight). MK-7009 also had excellent selectivity against both a range of human proteases and a broad panel of pharmacologically relevant ion channels, receptors, and enzymes. On the basis of this favorable profile, MK-7009 was selected for clinical development and is currently being evaluated in controlled clinical trials with both healthy volunteers and HCV-infected patients.


ACS Medicinal Chemistry Letters | 2012

Discovery of MK-5172, a Macrocyclic Hepatitis C Virus NS3/4a Protease Inhibitor.

Steven Harper; John A. McCauley; Michael T. Rudd; Marco Ferrara; Marcello DiFilippo; Benedetta Crescenzi; Uwe Koch; Alessia Petrocchi; M. Katharine Holloway; John W. Butcher; Joseph J. Romano; Kimberly J. Bush; Kevin F. Gilbert; Charles J. Mcintyre; Kevin Nguyen; Emanuela Nizi; Steven S. Carroll; Steven W. Ludmerer; Christine Burlein; Jillian DiMuzio; Donald J. Graham; Carolyn McHale; Mark Stahlhut; David B. Olsen; Edith Monteagudo; Simona Cianetti; Claudio Giuliano; Vincenzo Pucci; Nicole Trainor; Christine Fandozzi

A new class of HCV NS3/4a protease inhibitors containing a P2 to P4 macrocyclic constraint was designed using a molecular modeling-derived strategy. Building on the profile of previous clinical compounds and exploring the P2 and linker regions of the series allowed for optimization of broad genotype and mutant enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 15 (MK-5172), which is active against genotype 1-3 NS3/4a and clinically relevant mutant enzymes and has good plasma exposure and excellent liver exposure in multiple species.


Journal of the American Chemical Society | 2008

Molecular Modeling Based Approach to Potent P2−P4 Macrocyclic Inhibitors of Hepatitis C NS3/4A Protease

Nigel J. Liverton; M. Katharine Holloway; John A. McCauley; Michael T. Rudd; John W. Butcher; Steven S. Carroll; Jillian DiMuzio; Christine Fandozzi; Kevin F. Gilbert; Shi-Shan Mao; Charles J. Mcintyre; Kevin Nguyen; Joseph J. Romano; Mark Stahlhut; Bang-Lin Wan; and David B. Olsen; Joseph P. Vacca

Molecular modeling of inhibitor bound full length HCV NS3/4A protease structures proved to be a valuable tool in the design of a new series of potent NS3 protease inhibitors. Optimization of initial compounds provided 25a. The in vitro activity and selectivity as well as the rat pharmacokinetic profile of 25a compare favorably with the data for other NS3/4A protease inhibitors currently in clinical development for the treatment of HCV.


Journal of Biological Chemistry | 1999

NON-ACTIVE SITE CHANGES ELICIT BROAD-BASED CROSS-RESISTANCE OF THE HIV-1 PROTEASE TO INHIBITORS

David B. Olsen; Mark Stahlhut; Carrie A. Rutkowski; Hilary B. Schock; Aimee L. vanOlden; Lawrence C. Kuo

Three high level, cross-resistant variants of the HIV-1 protease have been analyzed for their ability to bind four protease inhibitors approved by the Food and Drug Administration (saquinavir, ritonavir, indinavir, and nelfinavir) as AIDS therapeutics. The loss in binding energy (ΔΔG b ) going from the wild-type enzyme to mutant enzymes ranges from 2.5 to 4.4 kcal/mol, 40–65% of which is attributed to amino acid substitutions away from the active site of the protease and not in direct contact with the inhibitor. The data suggest that non-active site changes are collectively a major contributor toward engendering resistance against the protease inhibitor and cannot be ignored when considering cross-resistance issues of drugs against the HIV-1 protease.


Antimicrobial Agents and Chemotherapy | 2005

Inhibitory Effect of 2′-Substituted Nucleosides on Hepatitis C Virus Replication Correlates with Metabolic Properties in Replicon Cells

Joanne E. Tomassini; Krista Getty; Mark Stahlhut; Sung Shim; Balkrishen Bhat; Anne B. Eldrup; Thazha P. Prakash; Steven S. Carroll; Osvaldo A. Flores; Malcolm Maccoss; Daniel R. McMasters; Giovanni Migliaccio; David B. Olsen

ABSTRACT Nucleosides have been widely used in the treatment of viral diseases, but relatively few have been identified as inhibitors of hepatitis C virus (HCV). The modified ribonucleosides, 2′-C-methyl-adenosine and 2′-O-methyl-cytidine, are potent inhibitors of HCV replication which specifically target the NS5B polymerase. Herein, a more extensive characterization of the effect of these compounds upon HCV replication in subgenomic replicons is reported. A highly selective antireplicative effect induced by the nucleosides in replicon-containing cell lines was maintained during an exponential growth period with potencies which paralleled the reduction of both positive- and negative-strand RNA replication. Moreover, the inhibitory effect closely correlated with the intrinsic metabolic properties of differing replicon clonal lines. Interestingly, while 2′-C-methyl-adenosine elicited similar inhibitory potencies in different cell lines, 2′-O-methyl-cytidine was found to be inactive in one replicon cell line tested, although the corresponding triphosphates comparably inhibited the in vitro activity of replication complexes isolated from these cells and the activity of NS5B polymerase using synthetic templates. The lack of antireplicative effect, attributed to poor intracellular conversion of the 2′-O-methyl-cytidine nucleoside to the active 5′-triphosphate, was reversed using a monophosphate prodrug. Thus, although replicon cells are useful for evaluating the effect of inhibitors upon HCV replication, these findings have important implications for their use in the identification and characterization of nucleosides and other chemotherapeutic agents requiring cellular metabolism.


Journal of Virological Methods | 2008

A transient cell-based phenotype assay for hepatitis C NS3/4A protease: Application to potency determinations of a novel macrocyclic inhibitor against diverse protease sequences isolated from plasma infected with HCV

Steven W. Ludmerer; Donald J. Graham; Mihir Patel; Kevin F. Gilbert; Mark Stahlhut; David B. Olsen

The potential of hepatitis C virus (HCV) to develop antiviral resistance renders phenotypic analysis of viral relapse or breakthrough sequences essential to the clinical evaluation of HCV antivirals. This work describes a transient assay in which clinical NS3/4A sequences are co-expressed in Huh-7 cells with a reporter whose activity is an easily quantifiable measure of protease activity. The utility of the assay was demonstrated in potency evaluations of a novel protease inhibitor against panels of NS3/4A sequences spanning genotypes 1-3. The compound was potent against genotype 1a and 1b protease sequences with sub-nanomolar to low nanomolar EC(50)s, slightly diminished in potency against genotype 2b sequences, but poorly active against genotype 3a sequences. Diverse sequences of the same HCV genotype, however, varied in response to the inhibitor as much as 30-fold, with susceptibility differences not easily attributed to specific amino acid polymorphisms. The results demonstrate the versatility of a novel phenotype assay in the evaluation of a promising new class of NS3/4A inhibitor. The results highlight further the complexity in correlating susceptibility differences with specific sequence polymorphisms, and underscore the value in direct phenotyping of clinical sequences for compound sensitivity. The assay will be useful for monitoring changes in susceptibility due to emergence of resistant virus during clinical studies of protease inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2002

Indinavir analogues with blocked metabolism sites as HIV protease inhibitors with improved pharmacological profiles and high potency against PI-resistant viral strains.

Yuan Cheng; Fengqi Zhang; Thomas A. Rano; Zhijian Lu; William A. Schleif; Lori Gabryelski; David B. Olsen; Mark Stahlhut; Carrie A. Rutkowski; Jiunn H. Lin; Lixia Jin; Emilio A. Emini; Kevin T. Chapman; James R. Tata

Indinavir analogues with blocked metabolism sites show highly improved pharmacokinetic profiles in animals. The cis-aminochromanol substituted analogues exhibited excellent potency against both the wild-type (NL4-3) virus and protease inhibitor-resistant HIV strains.

Collaboration


Dive into the Mark Stahlhut's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carrie A. Rutkowski

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Lawrence C. Kuo

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

William A. Schleif

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilio A. Emini

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge