Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Thrush is active.

Publication


Featured researches published by Mark Thrush.


Journal of Fish Diseases | 2008

An assessment of the variation in the prevalence of renal myxosporidiosis and hepatitis in wild brown trout, Salmo trutta L., within and between rivers in South-West England

Edmund J. Peeler; S. W. Feist; Matt Longshaw; Mark Thrush; Sophie St-Hilaire

The prevalence of renal myxosporidiosis in wild brown trout, Salmo trutta, in seven river catchments in South-West England was investigated. Three hundred and twenty-seven fish were sampled from 16 sites, of which 54 (16.5%) were found, by histological examination of the kidney, to be infected with Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease. No T. bryosalmonae infected fish were found in one river catchment, in other catchments the prevalence ranged from 2.5% to 36%. Hepatitis was strongly associated with the presence of T. bryosalmonae (odds ratio = 20.2, P < 0.001). Chloromyxum schurovi was found in 25% of fish and in six of seven river catchments, where the prevalence ranged from 2.4% to 63%. There was a strong negative association between the presence of T. bryosalmonae and C. schurovi (odds ratio = 0.10, P < 0.001). A hierarchical binomal model of the variance indicated that for T. bryosalmonae most of the variance existed at the site level, whereas for C. schurovi most variance existed at the river catchment level, suggesting that prevalence of T. bryosalmonae infection is determined largely by site level factors (e.g. presence of alternate host). The intraclass correlation coefficients (ICC) were 0.2 and 0.4 for T. bryosalmonae and C. schurovi, respectively, indicating the latter has higher effective transmission because of a higher level of infectiousness and/or abundance of alternate oligochaete hosts. These values can be used in future studies to estimate the sample sizes required to generate prevalence estimates with the required precision.


Preventive Veterinary Medicine | 2009

Epizootic haematopoietic necrosis virus--an assessment of the likelihood of introduction and establishment in England and Wales.

Edmund J. Peeler; Ana Afonso; Franck Berthe; Edgar Brun; C.J. Rodgers; A. Roque; Richard J. Whittington; Mark Thrush

Epizootic haematopoietic necrosis virus (EHNV) is an iridovirus that affects perch (Perca fluviatilis) and rainbow trout (Oncorhynchus mykiss). It emerged in Australia in the 1980s and has not been discovered elsewhere. It causes a high level of mortality in perch resulting in steep population declines. The main possible routes of introduction of the virus to England and Wales are the importation of infected live fish or carcasses. However, no trade in live susceptible species is permitted under current legislation, and no importation of carcasses currently takes place. The virus is hardy and low levels of challenge can infect perch. Therefore, mechanical transmission through the importation of non-susceptible fish species should be considered as a potential route of introduction and establishment. Carp (Cyprinus carpio) have been imported to the UK from Australia for release into still-water fisheries. A qualitative risk assessment concluded that the likelihood of EHNV introduction and establishment in England and Wales with the importation of a consignment of carp was very low. The level of uncertainty at a number of steps in the risk assessment scenario tree was high, notably the likelihood that carp become contaminated with the virus and whether effective contact (resulting in pathogen transmission) is made between the introduced carp and susceptible species in England and Wales. The virus would only establish when the water temperature is greater than 12 degrees C. Analysis of 10 years of data from two rivers in south-west England indicated that establishment could occur over a period of at least 14 weeks a year in southern England (when average water temperature exceed 12 degrees C). Imports of live fish from Australia need to be evaluated on a case-by-case basis to determine which, if any, sanitary measures are required to reduce the assessed risk to an acceptable level.


Epidemics | 2010

Epidemics and control strategies for diseases of farmed salmonids: A parameter study

Art R. T. Jonkers; Kieran J. Sharkey; Mark Thrush; James F. Turnbull; K. L. Morgan

The susceptibility of the English and Welsh fish farming and fisheries industry to emergent diseases is assessed using a stochastic simulation model. The model dynamics operate on a network comprising directed transport and river contacts, as well as undirected local and fomite transmissions. The directed connections cause outward transmission risk to be geographically more confined than inward risk. We consider reactive, proactive, and hybrid methods of control which correspond to a mixture of policy and the ease of disease detection. An explicit investigation of the impact of laboratory capacity is made. General quantified guidelines are derived to mitigate future epidemics.


Preventive Veterinary Medicine | 2014

Expert consultation on risk factors for introduction of infectious pathogens into fish farms.

Birgit Oidtmann; Edmund J. Peeler; Mark Thrush; Angus Cameron; R. Allan Reese; Fiona M. Pearce; Peter Dunn; Trude Marie Lyngstad; Saraya Tavornpanich; Edgar Brun; Katharina D.C. Stärk

An expert consultation was conducted to provide quantitative parameters required to inform risk-based surveillance of aquaculture holdings for selected infectious hazards. The hazards were four fish diseases endemic in some or several European countries: infectious salmon anaemia (ISA), viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN), and koi herpes virus disease (KHD). Experts were asked to provide estimates for the relative importance of 5 risk themes for the hazard to be introduced into and infect susceptible fish at the destination. The 5 risk themes were: (1) live fish and egg movements; (2) exposure via water; (3) on-site processing; (4) short distance mechanical transmission and (5) distance independent mechanical transmission. The experts also provided parameter estimates for hazard transmission pathways within the themes. The expert consultation was undertaken in a 2 step approach: an online survey followed by an expert consultation meeting. The expert opinion indicated that live fish movements and exposure via water were the major relevant risk themes. Experts were recruited from several European countries and thus covered a range of farming systems. Therefore, the outputs from the expert consultation have relevance for the European context.


Preventive Veterinary Medicine | 2013

Spring viraemia of carp (SVC) in the UK: the road to freedom.

Nick G. H. Taylor; Edmund J. Peeler; K.L. Denham; C.N. Crane; Mark Thrush; Peter Dixon; David M. Stone; Keith Way; Birgit Oidtmann

Spring viraemia of carp (SVC) is a disease of international importance that predominantly affects cyprinid fish and can cause significant mortality. In the United Kingdom (UK), SVC was first detected in 1977 with further cases occurring in fisheries, farms, wholesale and retail establishments throughout England and Wales (but not Scotland, where few cyprinid populations exist, nor Northern Ireland where SVC has never been detected) over the subsequent 30 years. Following a control and eradication programme for the disease initiated in 2005, the UK was recognised free of the disease in 2010. This study compiles historic records of SVC cases in England and Wales with a view to understanding its routes of introduction and spread, and assessing the effectiveness of the control and eradication programme in order to improve contingency plans to prevent and control future disease incursions in the cyprinid fish sectors. Between 1977 and 2010 the presence of SVC was confirmed on 108 occasions, with 65 of the cases occurring in sport fisheries and the majority of the remainder occurring in the ornamental fish sector. The study found that throughout the history of SVC in the UK, though cases were widely distributed, their occurrence was sporadic and the virus did not become endemic. All evidence indicates that SVC was not able to persist under UK environmental conditions, suggesting that the majority of cases were a result of new introductions to the UK as opposed to within-country spread. The control and eradication programme adopted in 2005 was highly effective and two years after its implementation cases of SVC ceased. Given the non-persistent nature of the pathogen the most important aspect of the control programme focused on preventing re-introduction of the virus to the UK. Despite the effectiveness of these controls against SVC, this approach is likely to be less effective against more persistent pathogens such as koi herpesvirus, which are likely to require more stringent measures to prevent within-country spread.


Transboundary and Emerging Diseases | 2015

Animal disease import risk analysis - a review of current methods and practice.

Edmund J. Peeler; R. A. Reese; Mark Thrush

The application of risk analysis to the spread of disease with international trade in animals and their products, that is, import risk analysis (IRA), has been largely driven by the Sanitary and Phytosanitary (SPS) agreement of the World Trade Organization (WTO). The degree to which the IRA standard established by the World Organization for Animal Health (OIE), and associated guidance, meets the needs of the SPS agreement is discussed. The use of scenario trees is the core modelling approach used to represent the steps necessary for the hazard to occur. There is scope to elaborate scenario trees for commodity IRA so that the quantity of hazard at each step is assessed, which is crucial to the likelihood of establishment. The dependence between exposure and establishment suggests that they should fall within the same subcomponent. IRA undertaken for trade reasons must include an assessment of consequences to meet SPS criteria, but guidance is sparse. The integration of epidemiological and economic modelling may open a path for better methods. Matrices have been used in qualitative IRA to combine estimates of entry and exposure, and consequences with likelihood, but this approach has flaws and better methods are needed. OIE IRA standards and guidance indicate that the volume of trade should be taken into account, but offer no detail. Some published qualitative IRAs have assumed current levels and patterns of trade without specifying the volume of trade, which constrains the use of IRA to determine mitigation measures (to reduce risk to an acceptable level) and whether the principle of equivalence, fundamental to the SPS agreement, has been observed. It is questionable whether qualitative IRA can meet all the criteria set out in the SPS agreement. Nevertheless, scope exists to elaborate the current standards and guidance, so they better serve the principle of science-based decision-making.


Journal of Fish Diseases | 2014

Acute dermatitis in farmed trout: an emerging disease.

Edmund J. Peeler; D Ryder; Mark Thrush; J Mewett; J Hulland; S. W. Feist

A new skin condition, known as puffy skin disease (PSD), emerged in farmed rainbow trout Oncorhynchus mykiss (Walbaum) in 2002. The number of new cases increased considerably from 2006. Clinical signs include white or grey skin patches, which become raised and red with excessive mucous production and scale loss. Fish are inappetant and lose condition. Histologically, the key feature is epithelial hyperplasia. We undertook a questionnaire study of trout farmers in England and Wales to investigate prevalence and risk factors. PSD was reported on 37% (n = 49) of rainbow trout sites, located in 28 river catchments. The increase in cases from 2006 onwards was mirrored by the increase in red mark syndrome (RMS). Prevalence and severity of PSD were highest in the summer months. The presence of PSD was associated with RMS (OR = 9.7, P < 0.001). Sites receiving live rainbow trout in the previous 12 months were considerably more likely to have PSD (OR = 5.3. P < 0.01), which suggests an infectious aetiology. The size of affected fish and prevalence varied between farms, indicating that farm-level factors are important. Future research should further investigate the aetiology of PSD and practices to manage the disease.


Transboundary and Emerging Diseases | 2013

A Model to Approximate Lake Temperature from Gridded Daily Air Temperature Records and Its Application in Risk Assessment for the Establishment of Fish Diseases in the UK

Mark Thrush; Edmund J. Peeler

Ambient water temperature is a key factor controlling the distribution and impact of disease in fish populations, and optimum temperature ranges have been characterised for the establishment of a number important aquatic diseases exotic to the UK. This study presents a simple regression method to approximate daily average surface water temperature in lakes of 0.5-15 ha in size across the UK using 5 km(2) gridded daily average air temperatures provided by the UK Meteorological Office. A Geographic information system (GIS) is used to present thematic maps of relative risk scores established for each grid cell based on the mean number of days per year that water temperature satisfied optimal criteria for the establishment of two economically important pathogens of cyprinid fish (koi herpesvirus (KHV) and spring viraemia of carp virus (SVCV)) and the distribution and density of fish populations susceptible to these viruses. High-density susceptible populations broadly overlap the areas where the temperature profiles are optimal for KHV (central and south-east England); however, few fish populations occur in areas where temperature profiles are most likely to result in the establishment of spring viremia of carp (SVC) (namely northern England and Scotland). The highest grid-cell risk scores for KHV and SVC were 7 and 6, respectively, out of a maximum score of 14. The proportion of grid cells containing susceptible populations with risk scores of 5 or more was 37% and 5% for KHV and SVC, respectively. This work demonstrates a risk-based approach to inform surveillance for exotic pathogens in aquatic animal health management, allowing efficient use of resources directed towards higher risk animals and geographic areas for early disease detection. The methodology could be used to examine the change in distribution of high-risk areas for both exotic and endemic fish diseases under different climate change scenarios.


Transboundary and Emerging Diseases | 2012

Monitoring Emerging Diseases of Fish and Shellfish Using Electronic Sources

Mark Thrush; P. L. Dunn; Edmund J. Peeler

New and emerging fish and shellfish diseases represent an important constraint to the growth and sustainability of many aquaculture sectors and have also caused substantial economic and environmental impacts in wild stocks. This paper details the results of 8 years of a monitoring programme for emerging aquatic animal diseases reported around the world. The objectives were to track global occurrences and, more specifically, to identify and provide advanced warning of disease threats that may affect wild and farmed fish stocks in the UK. A range of electronic information sources, including Internet newsletters, alerting services and news agency releases, was systematically searched for reports of new diseases, new presentations of known pathogens and known diseases occurring in new geographic locations or new host species. A database was established to log the details of key findings, and 250 emerging disease events in 52 countries were recorded during the period of study. These included 14 new diseases and a further 16 known diseases in new species. Viruses and parasites accounted for the majority of reports (55% and 24%, respectively), and known diseases occurring in new locations were the most important emerging disease category (in which viruses were dominant). Emerging diseases were reported disproportionally in salmonid species (33%), in farmed populations (62%) and in Europe and North America (80%). The lack of reports from some regions with significant aquaculture or fishery production may indicate that emerging diseases are not being recognized in these areas owing to insufficient surveillance or testing or that these events are being under-reported. The results are discussed in relation to processes underpinning disease emergence in the aquatic environment.


Ecohealth | 2009

Tool for estimating the risk of anthropogenic spread of Batrachochytrium denrobatidis between water bodies.

Sophie St-Hilaire; Mark Thrush; Trish Tatarian; Aman Prasad; Edmund J. Peeler

Batrachochytrium dendrobatidis (Bd) is a chytrid fungus, which has been associated with numerous amphibian mortality events around the world. It is hypothesized that Bd was inadvertently spread through human activities. We have developed a basic risk assessment tool to better understand the potential risk of transferring Bd between water bodies through field activities, and to target disinfection strategies which reduce the risk of spreading Bd. The questions in the risk assessment focus on the likelihood of Bd being present at sites, the likelihood of transferring the pathogen from one site to another, and the impact of transferring the pathogen. Identified risk factors include the presence of amphibians in the visited areas, the presence of Bd in one or more of the sites and in the surrounding area, the number of visitors to the sites, direct contact with amphibians, and the sharing of equipment between sites. The risk assessment tool can be found on the Internet at: http://www.cefas.co.uk/4449.aspx.

Collaboration


Dive into the Mark Thrush's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edgar Brun

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.N. Crane

Centre for Environment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge