Mark Vermeulen
Erasmus University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Vermeulen.
American Journal of Human Genetics | 2010
Kaye N. Ballantyne; Miriam Goedbloed; Rixun Fang; Onno Schaap; Oscar Lao; Andreas Wollstein; Ying Choi; Kate van Duijn; Mark Vermeulen; Silke Brauer; Ronny Decorte; Micaela Poetsch; Nicole von Wurmb-Schwark; Peter de Knijff; Damian Labuda; Hélène Vézina; Hans Knoblauch; Rüdiger Lessig; Lutz Roewer; Rafał Płoski; Tadeusz Dobosz; Lotte Henke; Jürgen Henke; Manohar R. Furtado; Manfred Kayser
Nonrecombining Y-chromosomal microsatellites (Y-STRs) are widely used to infer population histories, discover genealogical relationships, and identify males for criminal justice purposes. Although a key requirement for their application is reliable mutability knowledge, empirical data are only available for a small number of Y-STRs thus far. To rectify this, we analyzed a large number of 186 Y-STR markers in nearly 2000 DNA-confirmed father-son pairs, covering an overall number of 352,999 meiotic transfers. Following confirmation by DNA sequence analysis, the retrieved mutation data were modeled via a Bayesian approach, resulting in mutation rates from 3.78 × 10(-4) (95% credible interval [CI], 1.38 × 10(-5) - 2.02 × 10(-3)) to 7.44 × 10(-2) (95% CI, 6.51 × 10(-2) - 9.09 × 10(-2)) per marker per generation. With the 924 mutations at 120 Y-STR markers, a nonsignificant excess of repeat losses versus gains (1.16:1), as well as a strong and significant excess of single-repeat versus multirepeat changes (25.23:1), was observed. Although the total repeat number influenced Y-STR locus mutability most strongly, repeat complexity, the length in base pairs of the repeated motif, and the fathers age also contributed to Y-STR mutability. To exemplify how to practically utilize this knowledge, we analyzed the 13 most mutable Y-STRs in an independent sample set and empirically proved their suitability for distinguishing close and distantly related males. This finding is expected to revolutionize Y-chromosomal applications in forensic biology, from previous male lineage differentiation toward future male individual identification.
American Journal of Human Genetics | 2008
Manfred Kayser; Fan Liu; A. Cecile J. W. Janssens; Fernando Rivadeneira; Oscar Lao; Kate van Duijn; Mark Vermeulen; Pascal P. Arp; Mila Jhamai; Wilfred van IJcken; Johan T. den Dunnen; Simon Heath; Diana Zelenika; Dominiek D. G. Despriet; C. C. W. Klaver; Johannes R. Vingerling; Paulus T. V. M. de Jong; Albert Hofman; Yurii S. Aulchenko; André G. Uitterlinden; Ben A. Oostra; Cornelia van Duijn
Human iris color was one of the first traits for which Mendelian segregation was established. To date, the genetics of iris color is still not fully understood and is of interest, particularly in view of forensic applications. In three independent genome-wide association (GWA) studies of a total of 1406 persons and a genome-wide linkage study of 1292 relatives, all from the Netherlands, we found that the 15q13.1 region is the predominant region involved in human iris color. There were no other regions showing consistent genome-wide evidence for association and linkage to iris color. Single nucleotide polymorphisms (SNPs) in the HERC2 gene and, to a lesser extent, in the neighboring OCA2 gene were independently associated to iris color variation. OCA2 has been implicated in iris color previously. A replication study within two populations confirmed that the HERC2 gene is a new and significant determinant of human iris color variation, in addition to OCA2. Furthermore, HERC2 rs916977 showed a clinal allele distribution across 23 European populations, which was significantly correlated to iris color variation. We suggest that genetic variants regulating expression of the OCA2 gene exist in the HERC2 gene or, alternatively, within the 11.7 kb of sequence between OCA2 and HERC2, and that most iris color variation in Europeans is explained by those two genes. Testing markers in the HERC2-OCA2 region may be useful in forensic applications to predict eye color phenotypes of unknown persons of European genetic origin.
Cell Stem Cell | 2009
Catherine Robin; Karine Bollerot; Sandra S.C. Mendes; Esther Haak; Mihaela Crisan; Francesco F. Cerisoli; Ivoune I. Lauw; Polynikis Kaimakis; Ruud R.J.J. Jorna; Mark Vermeulen; Manfred Kayser; Reinier van der Linden; Parisa Imanirad; Monique M.A. Verstegen; Humaira H. Nawaz-Yousaf; Natalie Papazian; Eric A.P. Steegers; Elaine Dzierzak
Hematopoietic stem cells (HSCs) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emergence, HSCs are found in other anatomical sites of the mouse conceptus. While the mouse placenta contains abundant HSCs at midgestation, little is known concerning whether HSCs or hematopoietic progenitors are present and supported in the human placenta during development. In this study we show, over a range of developmental times including term, that the human placenta contains hematopoietic progenitors and HSCs. Moreover, stromal cell lines generated from human placenta at several developmental time points are pericyte-like cells and support human hematopoiesis. Immunostaining of placenta sections during development localizes hematopoietic cells in close contact with pericytes/perivascular cells. Thus, the human placenta is a potent hematopoietic niche throughout development.
Forensic Science International-genetics | 2012
Kaye N. Ballantyne; Victoria Keerl; Andreas Wollstein; Ying Choi; Sofia Zuniga; Arwin Ralf; Mark Vermeulen; Peter de Knijff; Manfred Kayser
The panels of 9-17 Y-chromosomal short tandem repeats (Y-STRs) currently used in forensic genetics have adequate resolution of different paternal lineages in many human populations, but have lower abilities to separate paternal lineages in populations expressing low Y-chromosome diversity. Moreover, current Y-STR sets usually fail to differentiate between related males who belong to the same paternal lineage and, as a consequence, conclusions cannot be drawn on the individual level as is desirable for forensic interpretations. Recently, we identified a new panel of rapidly mutating (RM) Y-STRs, composed of 13 markers with mutation rates above 1 × 10(-2), whereas most Y-STRs, including all currently used in forensics, have mutation rates in the order of 1 × 10(-3) or lower. In the present study, we demonstrate in 604 unrelated males sampled from 51 worldwide populations (HGDP-CEPH) that the RM Y-STRs provide substantially higher haplotype diversity and haplotype discrimination capacity (with only 3 haplotypes shared between 8 of the 604 worldwide males), than obtained with the largest set of 17 currently used Y-STRs (Yfiler) in the same samples (33 haplotypes shared between 85 males). Hence, RM Y-STRs yield high-resolution paternal lineage differentiation and provide a considerable improvement compared to Yfiler. We also find in this worldwide dataset substantially less genetic population substructure within and between geographic regions with RM Y-STRs than with Yfiler Y-STRs. Furthermore, with the present study we provide enhanced data evidence that the RM Y-STR panel is extremely successful in differentiating between closely and distantly related males. Among 305 male relatives, paternally connected by 1-20 meiotic transfers in 127 independent pedigrees, we show that 66% were separated by mutation events with the RM Y-STR panel whereas only 15% were with Yfiler; hence, RM Y-STRs provide a statistically significant 4.4-fold increase of average male relative differentiation relative to Yfiler. The RM Y-STR panel is powerful enough to separate closely related males; nearly 50% of the father and sons, and 60% of brothers could be distinguished with RM Y-STRs, whereas only 7.7% and 8%, respectively, with Yfiler. Thus, by introducing RM Y-STRs to the forensic genetic community we provide important solutions to several of the current limitations of Y chromosome analysis in forensic genetics.
International Journal of Legal Medicine | 2009
Miriam Goedbloed; Mark Vermeulen; Rixun N. Fang; Maria Lembring; Andreas Wollstein; Kaye N. Ballantyne; Oscar Lao; Silke Brauer; Carmen Krüger; Lutz Roewer; Rüdiger Lessig; Rafał Płoski; Tadeusz Dobosz; Lotte Henke; Jürgen Henke; Manohar R. Furtado; Manfred Kayser
The Y-chromosomal short tandem repeat (Y-STR) polymorphisms included in the AmpFlSTR® Yfiler® polymerase chain reaction amplification kit have become widely used for forensic and evolutionary applications where a reliable knowledge on mutation properties is necessary for correct data interpretation. Therefore, we investigated the 17 Yfiler Y-STRs in 1,730–1,764 DNA-confirmed father–son pairs per locus and found 84 sequence-confirmed mutations among the 29,792 meiotic transfers covered. Of the 84 mutations, 83 (98.8%) were single-repeat changes and one (1.2%) was a double-repeat change (ratio, 1:0.01), as well as 43 (51.2%) were repeat gains and 41 (48.8%) repeat losses (ratio, 1:0.95). Medians from Bayesian estimation of locus-specific mutation rates ranged from 0.0003 for DYS448 to 0.0074 for DYS458, with a median rate across all 17 Y-STRs of 0.0025. The mean age (at the time of son’s birth) of fathers with mutations was with 34.40 (±11.63) years higher than that of fathers without ones at 30.32 (±10.22) years, a difference that is highly statistically significant (p < 0.001). A Poisson-based modeling revealed that the Y-STR mutation rate increased with increasing father’s age on a statistically significant level (α = 0.0294, 2.5% quantile = 0.0001). From combining our data with those previously published, considering all together 135,212 meiotic events and 331 mutations, we conclude for the Yfiler Y-STRs that (1) none had a mutation rate of >1%, 12 had mutation rates of >0.1% and four of <0.1%, (2) single-repeat changes were strongly favored over multiple-repeat ones for all loci but 1 and (3) considerable variation existed among loci in the ratio of repeat gains versus losses. Our finding of three Y-STR mutations in one father–son pair (and two pairs with two mutations each) has consequences for determining the threshold of allelic differences to conclude exclusion constellations in future applications of Y-STRs in paternity testing and pedigree analyses.
Annals of Human Genetics | 2010
Daniel Corach; Oscar Lao; Cecilia Bobillo; Kristiaan J. van der Gaag; Sofia Zuniga; Mark Vermeulen; Kate van Duijn; Miriam Goedbloed; Peter M. Vallone; Walther Parson; Peter de Knijff; Manfred Kayser
We investigated the bio‐geographic ancestry of Argentineans, and quantified their genetic admixture, analyzing 246 unrelated male individuals from eight provinces of three Argentinean regions using ancestry‐sensitive DNA markers (ASDM) from autosomal, Y and mitochondrial chromosomes. Our results demonstrate that European, Native American and African ancestry components were detectable in the contemporary Argentineans, the amounts depending on the genetic system applied, exhibiting large inter‐individual heterogeneity. Argentineans carried a large fraction of European genetic heritage in their Y‐chromosomal (94.1%) and autosomal (78.5%) DNA, but their mitochondrial gene pool is mostly of Native American ancestry (53.7%); instead, African heritage was small in all three genetic systems (<4%). Population substructure in Argentina considering the eight sampled provinces was very small based on autosomal (0.92% of total variation was between provincial groups, p = 0.005) and mtDNA (1.77%, p = 0.005) data (none with NRY data), and all three genetic systems revealed no substructure when clustering the provinces into the three geographic regions to which they belong. The complex genetic ancestry picture detected in Argentineans underscores the need to apply ASDM from all three genetic systems to infer geographic origins and genetic admixture. This applies to all worldwide areas where people with different continental ancestry live geographically close together.
Molecular Biology and Evolution | 2010
Wentao Shi; Qasim Ayub; Mark Vermeulen; Rong Guang Shao; Sofia Zuniga; Kristiaan J. van der Gaag; Peter de Knijff; Manfred Kayser; Yali Xue; Chris Tyler-Smith
We have investigated human male demographic history using 590 males from 51 populations in the Human Genome Diversity Project - Centre d’Étude du Polymorphisme Humain worldwide panel, typed with 37 Y-chromosomal Single Nucleotide Polymorphisms and 65 Y-chromosomal Short Tandem Repeats and analyzed with the program Bayesian Analysis of Trees With Internal Node Generation. The general patterns we observe show a gradient from the oldest population time to the most recent common ancestors (TMRCAs) and expansion times together with the largest effective population sizes in Africa, to the youngest times and smallest effective population sizes in the Americas. These parameters are significantly negatively correlated with distance from East Africa, and the patterns are consistent with most other studies of human variation and history. In contrast, growth rate showed a weaker correlation in the opposite direction. Y-lineage diversity and TMRCA also decrease with distance from East Africa, supporting a model of expansion with serial founder events starting from this source. A number of individual populations diverge from these general patterns, including previously documented examples such as recent expansions of the Yoruba in Africa, Basques in Europe, and Yakut in Northern Asia. However, some unexpected demographic histories were also found, including low growth rates in the Hazara and Kalash from Pakistan and recent expansion of the Mozabites in North Africa.
Forensic Science International-genetics | 2009
Mark Vermeulen; Andreas Wollstein; Kristiaan J. van der Gaag; Oscar Lao; Yali Xue; Qiuju Wang; Lutz Roewer; Hans Knoblauch; Chris Tyler-Smith; Peter de Knijff; Manfred Kayser
We analyzed 67 short tandem repeat polymorphisms from the non-recombining part of the Y-chromosome (Y-STRs), including 49 rarely studied simple single-copy (ss)Y-STRs and 18 widely used Y-STRs, in 590 males from 51 populations belonging to 8 worldwide regions (HGDP-CEPH panel). Although autosomal DNA profiling provided no evidence for close relationship, we found 18 Y-STR haplotypes (defined by 67 Y-STRs) that were shared by two to five men in 13 worldwide populations, revealing high and widespread levels of cryptic male relatedness. Maximal (95.9%) haplotype resolution was achieved with the best 25 out of 67 Y-STRs in the global dataset, and with the best 3-16 markers in regional datasets (89.6-100% resolution). From the 49 rarely studied ssY-STRs, the 25 most informative markers were sufficient to reach the highest possible male lineage differentiation in the global (92.2% resolution), and 3-15 markers in the regional datasets (85.4-100%). Considerably lower haplotype resolutions were obtained with the three commonly used Y-STR sets (Minimal Haplotype, PowerPlex Y, and AmpFlSTR Yfiler. Six ssY-STRs (DYS481, DYS533, DYS549, DYS570, DYS576 and DYS643) were most informative to supplement the existing Y-STR kits for increasing haplotype resolution, or - together with additional ssY-STRs - as a new set for maximizing male lineage differentiation. Mutation rates of the 49 ssY-STRs were estimated from 403 meiotic transfers in deep-rooted pedigrees, and ranged from approximately 4.8 x 10(-4) for 31 ssY-STRs with no mutations observed to 1.3 x 10(-2) and 1.5 x 10(-2) for DYS570 and DYS576, respectively, the latter representing the highest mutation rates reported for human Y-STRs so far. Our findings thus demonstrate that ssY-STRs are useful for maximizing global and regional resolution of male lineages, either as a new set, or when added to commonly used Y-STR sets, and support their application to forensic, genealogical and anthropological studies.
Forensic Science International-genetics | 2007
Manfred Kayser; Mark Vermeulen; Hans Knoblauch; Herbert Schuster; Michael Krawczak; Lutz Roewer
Y-STR haplotyping is a powerful forensic and anthropological tool for identifying male lineages. We used high-resolution Y-STR haplotyping to evaluate the possibility of a blood relationship between two deep-rooted paternal genealogies with the same surname and originating from the same geographical region in Central Germany. One pedigree comprised 13 generations covering >450 years, the other comprised nine generations covering >300 years. Of the 68 loci tested, 64 (94%) consistently had the same allele in all males in the two pedigrees (except for some unambiguously sporadic mutations within pedigrees). Only four Y-STRs had a consistent allelic difference of exactly one repeat between the two pedigrees. These findings suggested that the two pedigrees were paternally related, and a conservative assessment taking average mutation rates and the available local haplotype frequencies for nine loci into account yielded a likelihood ratio of 8.2:1 in favour of this hypothesis. Our study thus highlights the power of Y-STR haplotyping to identify male lineages. It also shows that families can be linked to common ancestors on the basis of Y-STR data, even if these individuals lived several hundred years ago. However, the potential of Y-STR haplotyping could still not be fully exploited in our case due to a lack of appropriate population frequency data for all analysed Y-STR loci. This shortcoming makes a strong case for more comprehensive haplotype databases, including more samples and larger numbers of loci.
Investigative Genetics | 2011
Mannis van Oven; Mark Vermeulen; Manfred Kayser
BackgroundIn recent years, phylogeographic studies have produced detailed knowledge on the worldwide distribution of mitochondrial DNA (mtDNA) variants, linking specific clades of the mtDNA phylogeny with certain geographic areas. However, a multiplex genotyping system for the detection of the mtDNA haplogroups of major continental distribution that would be desirable for efficient DNA-based bio-geographic ancestry testing in various applications is still missing.ResultsThree multiplex genotyping assays, based on single-base primer extension technology, were developed targeting a total of 36 coding-region mtDNA variants that together differentiate 43 matrilineal haplo-/paragroups. These include the major diagnostic haplogroups for Africa, Western Eurasia, Eastern Eurasia and Native America. The assays show high sensitivity with respect to the amount of template DNA: successful amplification could still be obtained when using as little as 4 pg of genomic DNA and the technology is suitable for medium-throughput analyses.ConclusionsWe introduce an efficient and sensitive multiplex genotyping system for bio-geographic ancestry inference from mtDNA that provides resolution on the continental level. The method can be applied in forensics, to aid tracing unknown suspects, as well as in population studies, genealogy and personal ancestry testing. For more complete inferences of overall bio-geographic ancestry from DNA, the mtDNA system provided here can be combined with multiplex systems for suitable autosomal and, in the case of males, Y-chromosomal ancestry-sensitive DNA markers.