Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark W. Knuth is active.

Publication


Featured researches published by Mark W. Knuth.


Proteins | 2008

Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts

Heath E. Klock; Eric Koesema; Mark W. Knuth; Scott A. Lesley

Successful protein expression, purification, and crystallization for challenging targets typically requires evaluation of a multitude of expression constructs. Often many iterations of truncations and point mutations are required to identify a suitable derivative for recombinant expression. Making and characterizing these variants is a significant barrier to success. We have developed a rapid and efficient cloning process and combined it with a protein microscreening approach to characterize protein suitability for structural studies. The Polymerase Incomplete Primer Extension (PIPE) cloning method was used to rapidly clone 448 protein targets and then to generate 2143 truncations from 96 targets with minimal effort. Proteins were expressed, purified, and characterized via a microscreening protocol, which incorporates protein quantification, liquid chromatography mass spectrometry and analytical size exclusion chromatography (AnSEC) to evaluate suitability of the protein products for X‐ray crystallography. The results suggest that selecting expression constructs for crystal trials based primarily on expression solubility is insufficient. Instead, AnSEC scoring as a measure of protein polydispersity was found to be predictive of ultimate structure determination success and essential for identifying appropriate boundaries for truncation series. Overall structure determination success was increased by at least 38% by applying this combined PIPE cloning and microscreening approach to recalcitrant targets. Proteins 2008.


Structure | 2002

Structures of the Cancer Related Aurora-A, FAK and EphA2 Protein Kinases from Nanovolume Crystallography

Jacek Nowakowski; Ciarán N. Cronin; Duncan E. McRee; Mark W. Knuth; Christian G. Nelson; Nikola P. Pavletich; Joe Rogers; Bi-Ching Sang; Daniel Scheibe; Ronald V. Swanson; Devon A. Thompson

Protein kinases are important drug targets in human cancers, inflammation, and metabolic diseases. This report presents the structures of kinase domains for three cancer-associated protein kinases: ephrin receptor A2 (EphA2), focal adhesion kinase (FAK), and Aurora-A. The expression profiles of EphA2, FAK, and Aurora-A in carcinomas suggest that inhibitors of these kinases may have inherent potential as therapeutic agents. The structures were determined from crystals grown in nanovolume droplets, which produced high-resolution diffraction data at 1.7, 1.9, and 2.3 A for FAK, Aurora-A, and EphA2, respectively. The FAK and Aurora-A structures are the first determined within two unique subfamilies of human kinases, and all three structures provide new insights into kinase regulation and the design of selective inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The self-inhibited structure of full-length PCSK9 at 1.9 Å reveals structural homology with resistin within the C-terminal domain

Eric Hampton; Mark W. Knuth; Jun Li; Jennifer L. Harris; Scott A. Lesley; Glen Spraggon

Mutations in proprotein convertase subtilisin/kexin type 9 (PCSK9) are strongly associated with levels of low-density lipoprotein cholesterol in the blood plasma and, thereby, occurrence or resistance to atherosclerosis and coronary heart disease. Despite this importance, relatively little is known about the biology of PCSK9. Here, the crystal structure of a full-length construct of PCSK9 solved to 1.9-Å resolution is presented. The structure contains a fully folded C-terminal cysteine-rich domain (CRD), showing a distinct structural similarity to the resistin homotrimer, a small cytokine associated with obesity and diabetes. This structural relationship between the CRD of PCSK9 and the resistin family is not observed in primary sequence comparisons and strongly suggests a distant evolutionary link between the two molecules. This three-dimensional homology provides insight into the function of PCSK9 at the molecular level and will help to dissect the link between PCSK9 and CHD.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency

Rodolfo Gonzalez; Lori L. Jennings; Mark W. Knuth; Anthony P. Orth; Heath E. Klock; Weija Ou; Julie Feuerhelm; Mitchell V. Hull; Eric Koesema; Yuping Wang; Jia Zhang; Chunlei Wu; Charles Y. Cho; Andrew I. Su; Serge Batalov; Hong Chen; Kristen Johnson; Bryan A. Laffitte; Deborah G. Nguyen; Evan Y. Snyder; Peter G. Schultz; Jennifer L. Harris; Scott A. Lesley

Approximately 3,500 mammalian genes are predicted to be secreted or single-pass transmembrane proteins. The function of the majority of these genes is still unknown, and a number of the encoded proteins might find use as new therapeutic agents themselves or as targets for small molecule or antibody drug development. To analyze the physiological activities of the extracellular proteome, we developed a large-scale, high-throughput protein expression, purification, and screening platform. For this study, the complete human extracellular proteome was analyzed and prioritized based on genome-wide disease association studies to select 529 initial target genes. These genes were cloned into three expression vectors as native sequences and as N-terminal and C-terminal Fc fusions to create an initial collection of 806 purified secreted proteins. To determine its utility, this library was screened in an OCT4-based cellular assay to identify regulators of human embryonic stem-cell self-renewal. We found that the pigment epithelium-derived factor can promote long-term pluripotent growth of human embryonic stem cells without bFGF or TGFβ/Activin/Nodal ligand supplementation. Our results further indicate that activation of the pigment epithelium-derived factor receptor-Erk1/2 signaling pathway by the pigment epithelium-derived factor is sufficient to maintain the self-renewal of pluripotent human embryonic stem cells. These experiments illustrate the potential for discovering novel biological functions by directly screening protein diversity in cell-based phenotypic or reporter assays.


Proteins | 2007

Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif.

Chloe Zubieta; S. Sri Krishna; Mili Kapoor; Piotr Kozbial; Daniel McMullan; Herbert L. Axelrod; Mitchell D. Miller; Polat Abdubek; Eileen Ambing; Tamara Astakhova; Dennis Carlton; Hsiu-Ju Chiu; Thomas Clayton; Marc C. Deller; Lian Duan; Marc-André Elsliger; Julie Feuerhelm; Slawomir K. Grzechnik; Joanna Hale; Eric Hampton; Gye Won Han; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock; Mark W. Knuth; Abhinav Kumar; David Marciano; Andrew T. Morse; Edward Nigoghossian; Linda Okach

BtDyP from Bacteroides thetaiotaomicron (strain VPI‐5482) and TyrA from Shewanella oneidensis are dye‐decolorizing peroxidases (DyPs), members of a new family of heme‐dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 Å, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two‐domain, α+β ferredoxin‐like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme‐binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein). Proteins 2007.


Structure | 2009

Structural Basis of Murein Peptide Specificity of a γ-D-glutamyl-L-diamino Acid Endopeptidase

Qingping Xu; Sebastian Sudek; Daniel McMullan; Mitchell D. Miller; Bernhard H. Geierstanger; David H. Jones; S. Sri Krishna; Glen Spraggon; Badry Bursalay; Polat Abdubek; Claire Acosta; Eileen Ambing; Tamara Astakhova; Herbert L. Axelrod; Dennis Carlton; Jonathan Caruthers; Hsiu-Ju Chiu; Thomas Clayton; Marc C. Deller; Lian Duan; Ylva Elias; Marc-André Elsliger; Julie Feuerhelm; Slawomir K. Grzechnik; Joanna Hale; Gye Won Han; Justin Haugen; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock

The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.


Journal of Bacteriology | 2003

Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

Clifford D. Mol; Alexei Brooun; Douglas R. Dougan; Mark T. Hilgers; Leslie W. Tari; Robert A. Wijnands; Mark W. Knuth; Duncan E. McRee; Ronald V. Swanson

UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010

Structure of the γ-d-glutamyl-l-diamino acid endopeptidase YkfC from Bacillus cereus in complex with l-Ala-γ-d-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases

Qingping Xu; Polat Abdubek; Tamara Astakhova; Herbert L. Axelrod; Constantina Bakolitsa; Xiaohui Cai; Dennis Carlton; Connie Chen; Hsiu Ju Chiu; Michelle Chiu; Thomas Clayton; Debanu Das; Marc C. Deller; Lian Duan; Kyle Ellrott; Carol L. Farr; Julie Feuerhelm; Joanna C. Grant; Anna Grzechnik; Gye Won Han; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock; Mark W. Knuth; Piotr Kozbial; S. Sri Krishna; Abhinav Kumar; Winnie W. Lam; David Marciano; Mitchell D. Miller

The crystal structure of the highly specific γ-d-glutamyl-l-diamino acid endopeptidase YkfC from Bacillus cereus in complex with l-Ala-γ-d-Glu reveals the structural basis for the substrate specificity of NlpC/P60-family cysteine peptidases.


Journal of Bacteriology | 2003

The Crystal Structure of Shikimate Dehydrogenase (AroE) Reveals a Unique NADPH Binding Mode

Sheng Ye; Frank von Delft; Alexei Brooun; Mark W. Knuth; Ronald V. Swanson; Duncan E. McRee

Shikimate dehydrogenase catalyzes the NADPH-dependent reversible reduction of 3-dehydroshikimate to shikimate. We report the first X-ray structure of shikimate dehydrogenase from Haemophilus influenzae to 2.4-A resolution and its complex with NADPH to 1.95-A resolution. The molecule contains two domains, a catalytic domain with a novel open twisted alpha/beta motif and an NADPH binding domain with a typical Rossmann fold. The enzyme contains a unique glycine-rich P-loop with a conserved sequence motif, GAGGXX, that results in NADPH adopting a nonstandard binding mode with the nicotinamide and ribose moieties disordered in the binary complex. A deep pocket with a narrow entrance between the two domains, containing strictly conserved residues primarily contributed by the catalytic domain, is identified as a potential 3-dehydroshikimate binding pocket. The flexibility of the nicotinamide mononucleotide portion of NADPH may be necessary for the substrate 3-dehydroshikimate to enter the pocket and for the release of the product shikimate.


Journal of Molecular Biology | 2010

Crystal Structure of the First Eubacterial Mre11 Nuclease Reveals Novel Features that May Discriminate Substrates During DNA Repair

Debanu Das; Davide Moiani; Herbert L. Axelrod; Mitchell D. Miller; Daniel McMullan; Kevin K. Jin; Polat Abdubek; Tamara Astakhova; Prasad Burra; Dennis Carlton; Hsiu Ju Chiu; Thomas Clayton; Marc C. Deller; Lian Duan; Dustin Ernst; Julie Feuerhelm; Joanna C. Grant; Anna Grzechnik; Slawomir K. Grzechnik; Gye Won Han; Lukasz Jaroszewski; Heath E. Klock; Mark W. Knuth; Piotr Kozbial; S. Sri Krishna; Abhinav Kumar; David Marciano; Andrew T. Morse; Edward Nigoghossian; Linda Okach

Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks. As X-ray structural information has been available only for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is an Mre11 endo/exonuclease (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only approximately 20%. However, they differ substantially in their DNA-specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA-specificity domain are not. The structural differences likely affect how Mre11 from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with the exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on single-stranded and double-stranded DNA substrates, respectively.

Collaboration


Dive into the Mark W. Knuth's collaboration.

Top Co-Authors

Avatar

Heath E. Klock

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Mitchell D. Miller

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hsiu-Ju Chiu

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Polat Abdubek

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Kevin K. Jin

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Sri Krishna

University of California

View shared research outputs
Top Co-Authors

Avatar

Herbert L. Axelrod

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gye Won Han

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Julie Feuerhelm

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Dennis Carlton

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge