Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heath E. Klock is active.

Publication


Featured researches published by Heath E. Klock.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Structural Genomics of the Thermotoga maritima Proteome Implemented in a High-throughput Structure Determination Pipeline

Scott A. Lesley; Peter Kuhn; Adam Godzik; Ashley M. Deacon; Irimpan I. Mathews; Andreas Kreusch; Glen Spraggon; Heath E. Klock; Daniel McMullan; Tanya Shin; Juli Vincent; Alyssa Robb; Linda S. Brinen; Mitchell D. Miller; Timothy M. McPhillips; Mark A. Miller; Daniel Scheibe; Jaume M. Canaves; Chittibabu Guda; Lukasz Jaroszewski; Thomas L. Selby; Marc André Elsliger; John Wooley; Susan S. Taylor; Keith O. Hodgson; Ian A. Wilson; Peter G. Schultz; Raymond C. Stevens

Structural genomics is emerging as a principal approach to define protein structure–function relationships. To apply this approach on a genomic scale, novel methods and technologies must be developed to determine large numbers of structures. We describe the design and implementation of a high-throughput structural genomics pipeline and its application to the proteome of the thermophilic bacterium Thermotoga maritima. By using this pipeline, we successfully cloned and attempted expression of 1,376 of the predicted 1,877 genes (73%) and have identified crystallization conditions for 432 proteins, comprising 23% of the T. maritima proteome. Representative structures from TM0423 glycerol dehydrogenase and TM0449 thymidylate synthase-complementing protein are presented as examples of final outputs from the pipeline.


Proteins | 2008

Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts

Heath E. Klock; Eric Koesema; Mark W. Knuth; Scott A. Lesley

Successful protein expression, purification, and crystallization for challenging targets typically requires evaluation of a multitude of expression constructs. Often many iterations of truncations and point mutations are required to identify a suitable derivative for recombinant expression. Making and characterizing these variants is a significant barrier to success. We have developed a rapid and efficient cloning process and combined it with a protein microscreening approach to characterize protein suitability for structural studies. The Polymerase Incomplete Primer Extension (PIPE) cloning method was used to rapidly clone 448 protein targets and then to generate 2143 truncations from 96 targets with minimal effort. Proteins were expressed, purified, and characterized via a microscreening protocol, which incorporates protein quantification, liquid chromatography mass spectrometry and analytical size exclusion chromatography (AnSEC) to evaluate suitability of the protein products for X‐ray crystallography. The results suggest that selecting expression constructs for crystal trials based primarily on expression solubility is insufficient. Instead, AnSEC scoring as a measure of protein polydispersity was found to be predictive of ultimate structure determination success and essential for identifying appropriate boundaries for truncation series. Overall structure determination success was increased by at least 38% by applying this combined PIPE cloning and microscreening approach to recalcitrant targets. Proteins 2008.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency

Rodolfo Gonzalez; Lori L. Jennings; Mark W. Knuth; Anthony P. Orth; Heath E. Klock; Weija Ou; Julie Feuerhelm; Mitchell V. Hull; Eric Koesema; Yuping Wang; Jia Zhang; Chunlei Wu; Charles Y. Cho; Andrew I. Su; Serge Batalov; Hong Chen; Kristen Johnson; Bryan A. Laffitte; Deborah G. Nguyen; Evan Y. Snyder; Peter G. Schultz; Jennifer L. Harris; Scott A. Lesley

Approximately 3,500 mammalian genes are predicted to be secreted or single-pass transmembrane proteins. The function of the majority of these genes is still unknown, and a number of the encoded proteins might find use as new therapeutic agents themselves or as targets for small molecule or antibody drug development. To analyze the physiological activities of the extracellular proteome, we developed a large-scale, high-throughput protein expression, purification, and screening platform. For this study, the complete human extracellular proteome was analyzed and prioritized based on genome-wide disease association studies to select 529 initial target genes. These genes were cloned into three expression vectors as native sequences and as N-terminal and C-terminal Fc fusions to create an initial collection of 806 purified secreted proteins. To determine its utility, this library was screened in an OCT4-based cellular assay to identify regulators of human embryonic stem-cell self-renewal. We found that the pigment epithelium-derived factor can promote long-term pluripotent growth of human embryonic stem cells without bFGF or TGFβ/Activin/Nodal ligand supplementation. Our results further indicate that activation of the pigment epithelium-derived factor receptor-Erk1/2 signaling pathway by the pigment epithelium-derived factor is sufficient to maintain the self-renewal of pluripotent human embryonic stem cells. These experiments illustrate the potential for discovering novel biological functions by directly screening protein diversity in cell-based phenotypic or reporter assays.


Protein Science | 2009

On the use of DXMS to produce more crystallizable proteins: Structures of the T. maritima proteins TM0160 and TM1171

Glen Spraggon; Dennis Pantazatos; Heath E. Klock; Ian A. Wilson; Virgil L. Woods; Scott A. Lesley

The structure of two Thermotoga maritima proteins, a conserved hypothetical protein (TM0160) and a transcriptional regulator (TM1171), have now been determined at 1.9 Å and 2.3 Å resolution, respectively, as part of a large‐scale structural genomics project. Our first efforts to crystallize full‐length versions of these targets were unsuccessful. However, analysis of the recombinant purified proteins using the technique of enhanced amide hydrogen/deuterium exchange mass spectroscopy (DXMS) revealed substantial regions of rapid amide deuterium hydrogen exchange, consistent with flexible regions of the structures. Based on these exchange data, truncations were designed to selectively remove the disordered C‐terminal regions, and the resulting daughter proteins showed greatly enhanced crystallizability. Comparative DXMS analysis of full‐length protein versus truncated forms demonstrated complete and exact preservation of the exchange rate profiles in the retained sequence, indicative of conservation of the native folded structure. This study presents the first structures produced with the aid of the DXMS method for salvaging intractable crystallization targets. The structure of TM0160 represents a new fold and highlights the use of this approach where any prior structural knowledge is absent. The structure of TM1171 represents an example where the lack of a substrate/cofactor may impair crystallization. The details of both structures are presented and discussed.


Proteins | 2007

Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif.

Chloe Zubieta; S. Sri Krishna; Mili Kapoor; Piotr Kozbial; Daniel McMullan; Herbert L. Axelrod; Mitchell D. Miller; Polat Abdubek; Eileen Ambing; Tamara Astakhova; Dennis Carlton; Hsiu-Ju Chiu; Thomas Clayton; Marc C. Deller; Lian Duan; Marc-André Elsliger; Julie Feuerhelm; Slawomir K. Grzechnik; Joanna Hale; Eric Hampton; Gye Won Han; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock; Mark W. Knuth; Abhinav Kumar; David Marciano; Andrew T. Morse; Edward Nigoghossian; Linda Okach

BtDyP from Bacteroides thetaiotaomicron (strain VPI‐5482) and TyrA from Shewanella oneidensis are dye‐decolorizing peroxidases (DyPs), members of a new family of heme‐dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 Å, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two‐domain, α+β ferredoxin‐like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme‐binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein). Proteins 2007.


Proteins | 2002

Crystal structure of thy1, a thymidylate synthase complementing protein from Thermotoga maritima at 2.25 Å resolution

Peter Kuhn; Scott A. Lesley; Irimpan I. Mathews; Jaume M. Canaves; Linda S. Brinen; Xiaoping Dai; Ashley M. Deacon; Marc André Elsliger; Said Eshaghi; Ross Floyd; Adam Godzik; Carina Grittini; Slawomir K. Grzechnik; Chittibabu Guda; Keith O. Hodgson; Lukasz Jaroszewski; Cathy Karlak; Heath E. Klock; Eric Koesema; John M. Kovarik; Andreas Kreusch; Daniel McMullan; Timothy M. McPhillips; Mark A. Miller; Mitchell D. Miller; Andrew T. Morse; Kin Moy; Jie Ouyang; Alyssa Robb; Kevin Rodrigues

Peter Kuhn, Scott A. Lesley, Irimpan I. Mathews, Jaume M. Canaves, Linda S. Brinen, Xiaoping Dai, Ashley M. Deacon, Marc A. Elsliger, Said Eshaghi, Ross Floyd, Adam Godzik, Carina Grittini, Slawomir K. Grzechnik, Chittibabu Guda, Keith O. Hodgson, Lukasz Jaroszewski, Cathy Karlak, Heath E. Klock, Eric Koesema, John M. Kovarik, Andreas T. Kreusch, Daniel McMullan, Timothy M. McPhillips, Mark A. Miller, Mitchell Miller, Andrew Morse, Kin Moy, Jie Ouyang, Alyssa Robb, Kevin Rodrigues, Thomas L. Selby, Glen Spraggon, Raymond C. Stevens, Susan S. Taylor, Henry van den Bedem, Jeff Velasquez, Juli Vincent, Xianhong Wang, Bill West, Guenter Wolf, John Wooley, and Ian A. Wilson* The Joint Center for Structural Genomics Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California The Genomics Institute of Novartis Foundation, San Diego, California The San Diego Supercomputer Center, La Jolla, California The University of California, San Diego, La Jolla, California The Scripps Research Institute, La Jolla, California


Structure | 2009

Structural Basis of Murein Peptide Specificity of a γ-D-glutamyl-L-diamino Acid Endopeptidase

Qingping Xu; Sebastian Sudek; Daniel McMullan; Mitchell D. Miller; Bernhard H. Geierstanger; David H. Jones; S. Sri Krishna; Glen Spraggon; Badry Bursalay; Polat Abdubek; Claire Acosta; Eileen Ambing; Tamara Astakhova; Herbert L. Axelrod; Dennis Carlton; Jonathan Caruthers; Hsiu-Ju Chiu; Thomas Clayton; Marc C. Deller; Lian Duan; Ylva Elias; Marc-André Elsliger; Julie Feuerhelm; Slawomir K. Grzechnik; Joanna Hale; Gye Won Han; Justin Haugen; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock

The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.


Protein Science | 2006

Expression, purification, and characterization of Thermotoga maritima membrane proteins for structure determination

Linda Columbus; Jan Lipfert; Heath E. Klock; Ian S. Millett; Sebastian Doniach; Scott A. Lesley

Structural studies of integral membrane proteins typically rely upon detergent micelles as faithful mimics of the native lipid bilayer. Therefore, membrane protein structure determination would be greatly facilitated by biophysical techniques that are capable of evaluating and assessing the fold and oligomeric state of these proteins solubilized in detergent micelles. In this study, an approach to the characterization of detergent‐solubilized integral membrane proteins is presented. Eight Thermotoga maritima membrane proteins were screened for solubility in 11 detergents, and the resulting soluble protein–detergent complexes were characterized with small angle X‐ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy, and chemical cross‐linking to evaluate the homogeneity, oligomeric state, radius of gyration, and overall fold. A new application of SAXS is presented, which does not require density matching, and NMR methods, typically used to evaluate soluble proteins, are successfully applied to detergent‐solubilized membrane proteins. Although detergents with longer alkyl chains solubilized the most proteins, further characterization indicates that some of these protein–detergent complexes are not well suited for NMR structure determination due to conformational exchange and protein oligomerization. These results emphasize the need to screen several different detergents and to characterize the protein–detergent complex in order to pursue structural studies. Finally, the physical characterization of the protein–detergent complexes indicates optimal solution conditions for further structural studies for three of the eight overexpressed membrane proteins.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010

Structure of the γ-d-glutamyl-l-diamino acid endopeptidase YkfC from Bacillus cereus in complex with l-Ala-γ-d-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases

Qingping Xu; Polat Abdubek; Tamara Astakhova; Herbert L. Axelrod; Constantina Bakolitsa; Xiaohui Cai; Dennis Carlton; Connie Chen; Hsiu Ju Chiu; Michelle Chiu; Thomas Clayton; Debanu Das; Marc C. Deller; Lian Duan; Kyle Ellrott; Carol L. Farr; Julie Feuerhelm; Joanna C. Grant; Anna Grzechnik; Gye Won Han; Lukasz Jaroszewski; Kevin K. Jin; Heath E. Klock; Mark W. Knuth; Piotr Kozbial; S. Sri Krishna; Abhinav Kumar; Winnie W. Lam; David Marciano; Mitchell D. Miller

The crystal structure of the highly specific γ-d-glutamyl-l-diamino acid endopeptidase YkfC from Bacillus cereus in complex with l-Ala-γ-d-Glu reveals the structural basis for the substrate specificity of NlpC/P60-family cysteine peptidases.


Journal of Molecular Biology | 2003

Structure analysis of peptide deformylases from streptococcus pneumoniae,staphylococcus aureus, thermotoga maritima, and pseudomonas aeruginosa: snapshots of the oxygen sensitivity of peptide deformylase

Andreas Kreusch; Glen Spraggon; Chris C. Lee; Heath E. Klock; Daniel McMullan; Ken Ng; Tanya Shin; Juli Vincent; Ian Warner; Christer Ericson; Scott A. Lesley

Peptide deformylase (PDF) has received considerable attention during the last few years as a potential target for a new type of antibiotics. It is an essential enzyme in eubacteria for the removal of the formyl group from the N terminus of the nascent polypeptide chain. We have solved the X-ray structures of four members of this enzyme family, two from the Gram-positive pathogens Streptococcus pneumoniae and Staphylococcus aureus, and two from the Gram-negative bacteria Thermotoga maritima and Pseudomonas aeruginosa. Combined with the known structures from the Escherichia coli enzyme and the recently solved structure of the eukaryotic deformylase from Plasmodium falciparum, a complete picture of the peptide deformylase structure and function relationship is emerging. This understanding could help guide a more rational design of inhibitors. A structure-based comparison between PDFs reveals some conserved differences between type I and type II enzymes. Moreover, our structures provide insights into the known instability of PDF caused by oxidation of the metal-ligating cysteine residue.

Collaboration


Dive into the Heath E. Klock's collaboration.

Top Co-Authors

Avatar

Daniel McMullan

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Mitchell D. Miller

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Polat Abdubek

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott A. Lesley

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Hsiu-Ju Chiu

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark W. Knuth

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Gye Won Han

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ashley M. Deacon

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge