Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark W. Silby is active.

Publication


Featured researches published by Mark W. Silby.


Fems Microbiology Reviews | 2011

Pseudomonas genomes: diverse and adaptable

Mark W. Silby; Craig Winstanley; Scott A.C. Godfrey; Stuart B. Levy; Robert W. Jackson

Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.


The ISME Journal | 2011

Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors

Paolina Garbeva; Mark W. Silby; Jos M. Raaijmakers; Stuart B. Levy; Wietse de Boer

The ability of soil bacteria to successfully compete with a range of other microbial species is crucial for their growth and survival in the nutrient-limited soil environment. In the present work, we studied the behavior and transcriptional responses of soil-inhabiting Pseudomonas fluorescens strain Pf0-1 on nutrient-poor agar to confrontation with strains of three phylogenetically different bacterial genera, that is, Bacillus, Brevundimonas and Pedobacter. Competition for nutrients was apparent as all three bacterial genera had a negative effect on the density of P. fluorescens Pf0-1; this effect was most strong during the interaction with Bacillus. Microarray-based analyses indicated strong differences in the transcriptional responses of Pf0-1 to the different competitors. There was higher similarity in the gene expression response of P. fluorescens Pf0-1 to the Gram-negative bacteria as compared with the Gram-positive strain. The Gram-negative strains did also trigger the production of an unknown broad-spectrum antibiotic in Pf0-1. More detailed analysis indicated that expression of specific Pf0-1 genes involved in signal transduction and secondary metabolite production was strongly affected by the competitors’ identity, suggesting that Pf0-1 can distinguish among different competitors and fine-tune its competitive strategies. The results presented here demonstrate that P. fluorescens Pf0-1 shows a species-specific transcriptional and metabolic response to bacterial competitors and provide new leads in the identification of specific cues in bacteria–bacteria interactions and of novel competitive strategies, antimicrobial traits and genes.


Journal of Bacteriology | 2004

Use of In Vivo Expression Technology To Identify Genes Important in Growth and Survival of Pseudomonas fluorescens Pf0-1 in Soil: Discovery of Expressed Sequences with Novel Genetic Organization

Mark W. Silby; Stuart B. Levy

Studies were undertaken to determine the genetic needs for the survival of Pseudomonas fluorescens Pf0-1, a gram-negative soil bacterium potentially important for biocontrol and bioremediation, in soil. In vivo expression technology (IVET) identified 22 genes with elevated expression in soil relative to laboratory media. Soil-induced sequences included genes with probable functions of nutrient acquisition and use, and of gene regulation. Ten sequences, lacking similarity to known genes, overlapped divergent known genes, revealing a novel genetic organization at those soil-induced loci. Mutations in three soil-induced genes led to impaired early growth in soil but had no impact on growth in laboratory media. Thus, IVET studies have identified sequences important for soil growth and have revealed a gene organization that was undetected by traditional laboratory approaches.


Journal of Bacteriology | 2003

Genetic analysis of the AdnA regulon in Pseudomonas fluorescens: nonessential role of flagella in adhesion to sand and biofilm formation.

Eduardo A. Robleto; T. Inmaculada Lopez-Hernandez; Mark W. Silby; Stuart B. Levy

AdnA is a transcription factor in Pseudomonas fluorescens that affects flagellar synthesis, biofilm formation, and sand adhesion. To identify the AdnA regulon, we used a promoterless Tn5-lacZ element to study the phenotypes of insertion mutants in the presence and absence of AdnA. Of 12,000 insertions, we identified seven different putative open reading frames (ORFs) activated by AdnA (named aba for activated by AdnA). aba120 and aba177 showed homology to flgC and flgI, components of the basal body of the flagella in Pseudomonas aeruginosa. Two other insertions, aba18 and aba51, disrupted genes affecting chemotaxis. The mutant loci aba160 (possibly affecting lipopolysaccharide synthesis) and aba175 (unknown function) led to loss of flagella. The mutant bearing aba203 became motile when complemented with adnA, but the mutated gene showed no similarity to known genes. Curiously, aba18, aba51, aba160, and aba203 mutants formed biofilms even in the absence of AdnA, suppressing the phenotype of the adnA deletion mutant. The combined findings suggest that flagella are nonessential for sand attachment or biofilm formation. Sequence and promoter analyses indicate that AdnA affects at least 23 ORFs either directly or by polar effects. These results support the concept that AdnA regulates cell processes other than those directly related to flagellar synthesis and define a broader cadre of genes in P. fluorescens than that described so far for its homolog, FleQ, in P. aeruginosa.


PLOS Genetics | 2008

Overlapping Protein-Encoding Genes in Pseudomonas fluorescens Pf0-1

Mark W. Silby; Stuart B. Levy

The annotated genome sequences of prokaryotes seldom include overlapping genes encoded opposite each other by the same stretch of DNA. However, antisense transcription is becoming recognized as a widespread phenomenon in eukaryotes, and examples have been linked to important biological processes. Pseudomonas fluorescens inhabits aquatic and terrestrial environments, and can be regarded as an environmental generalist. The genetic basis for this ecological success is not well understood. In a previous search for soil-induced genes in P. fluorescens Pf0-1, ten antisense genes were discovered. These were termed ‘cryptic’ genes, as they had escaped detection by gene-hunting algorithms, and lacked easily recognizable promoters. In this communication, we designate such genes as ‘non-predicted’ or ‘hidden’. Using reverse transcription PCR, we show that at each of six non-predicted gene loci chosen for study, transcription occurs from both ‘sense’ and ‘antisense’ DNA strands. Further, at least one of these hidden antisense genes, iiv14, encodes a protein, as does the sense transcript, both identified by poly-histidine tags on the C-terminus of the proteins. Mutational and complementation studies showed that this novel antisense gene was important for efficient colonization of soil, and multiple copies in the wildtype host improved the speed of soil colonization. Introduction of a stop codon early in the gene eliminated complementation, further implicating the protein in colonization of soil. We therefore designate iiv14 “cosA”. These data suggest that, as is the case with eukaryotes, some bacterial genomes are more densely coded than currently recognized.


Science | 2015

Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system

Tiffany B. Taylor; Geraldine Mulley; Alexander H. Dills; Abdullah S. Alsohim; Liam J. McGuffin; David J. Studholme; Mark W. Silby; Michael A. Brockhurst; Louise J. Johnson; Robert W. Jackson

Losing and then regaining flagella The ability to adapt to changes in the function of gene regulators, as opposed to structural genes, is a crucial aspect of evolutionary change. Taylor et al. mutated a central regulator for the formation of flagella in the bacterium Pseudomonas fluorescens. They then put the mutated flagella-free bacteria under strong selection pressure to regain mobility. The mutated bacteria regained the lost flagella, and motility, within 4 days. Two stereotypical mutations diverted an evolutionarily related regulator that normally controls nitrogen uptake to control flagella biosynthesis. The mutations increased the levels of the co-opted regulator, then altered its specificity for the flagella pathway. Science, this issue p. 1014 Mutation of a bacterial flagellar regulator gene can be compensated for by changes in a related nitrogen uptake regulator. A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homolog of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and toward its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.


PLOS ONE | 2014

Inhaled Lactonase Reduces Pseudomonas aeruginosa Quorum Sensing and Mortality in Rat Pneumonia

Sami Hraiech; Julien Hiblot; John Lafleur; Hubert Lepidi; Laurent Papazian; Jean Marc Rolain; Didier Raoult; Mikael Elias; Mark W. Silby; Janek Bzdrenga; Fabienne Brégeon; Eric Chabriere

Rationale The effectiveness of antibiotic molecules in treating Pseudomonas aeruginosa pneumonia is reduced as a result of the dissemination of bacterial resistance. The existence of bacterial communication systems, such as quorum sensing, has provided new opportunities of treatment. Lactonases efficiently quench acyl-homoserine lactone-based bacterial quorum sensing, implicating these enzymes as potential new anti-Pseudomonas drugs that might be evaluated in pneumonia. Objectives The aim of the present study was to evaluate the ability of a lactonase called SsoPox-I to reduce the mortality of a rat P. aeruginosa pneumonia. Methods To assess SsoPox-I-mediated quorum quenching, we first measured the activity of the virulence gene lasB, the synthesis of pyocianin, the proteolytic activity of a bacterial suspension and the formation of biofilm of a PAO1 strain grown in the presence of lactonase. In an acute lethal model of P. aeruginosa pneumonia in rats, we evaluated the effects of an early or deferred intra-tracheal treatment with SsoPox-I on the mortality, lung bacterial count and lung damage. Measurements and Primary Results SsoPox-I decreased PAO1 lasB virulence gene activity, pyocianin synthesis, proteolytic activity and biofilm formation. The early use of SsoPox-I reduced the mortality of rats with acute pneumonia from 75% to 20%. Histological lung damage was significantly reduced but the lung bacterial count was not modified by the treatment. A delayed treatment was associated with a non-significant reduction of mortality. Conclusion These results demonstrate the protective effects of lactonase SsoPox-I in P. aeruginosa pneumonia and open the way for a future therapeutic use.


PLOS ONE | 2009

Proteomic Detection of Non-Annotated Protein-Coding Genes in Pseudomonas fluorescens Pf0-1

Wook Kim; Mark W. Silby; Samuel O. Purvine; Julie S. Nicoll; Kim K. Hixson; Matthew E. Monroe; Carrie D. Nicora; Mary S. Lipton; Stuart B. Levy

Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of possible functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations that predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes that were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologs in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.


Applied and Environmental Microbiology | 2009

Requirement of polyphosphate by Pseudomonas fluorescens Pf0-1 for competitive fitness and heat tolerance in laboratory media and sterile soil.

Mark W. Silby; Julie S. Nicoll; Stuart B. Levy

ABSTRACT Knowledge of the genetic basis for bacterial survival and persistence in soil is a critical component in the development of successful biological control strategies and for understanding the ecological success of bacteria. We found a locus specifying polyphosphate kinase (ppk) and a nonpredicted antisense RNA (iiv8) in Pseudomonas fluorescens Pf0-1 to be necessary for optimal competitive fitness in LB broth culture and sterile loam soil. Pf0-1 lacking ppk and iiv8 was more than 10-fold less competitive against wild-type Pf0-1 in sterile loam soil low in inorganic phosphate. Studies indicated that ppk, and not iiv8, was required for competitive fitness. No role for iiv8 was identified. While a ppk and iiv8 mutant of Pf0-1 did not have increased sensitivity to osmotic, oxidative, and acid stress, it was more sensitive to elevated temperatures in laboratory medium and during growth in sterile soil. ppk was shown to be part of the Pho regulon in P. fluorescens, being upregulated in response to a low external Pi concentration. Of importance, overproduction of polyphosphate in the soil environment appears to be more deleterious than production of none at all. Our findings reveal a new role for polyphosphate (and the need for proper regulation of its production) in competitive fitness of P. fluorescens in laboratory and soil environments.


PLOS ONE | 2011

No Apparent Costs for Facultative Antibiotic Production by the Soil Bacterium Pseudomonas fluorescens Pf0-1

Paolina Garbeva; Olaf Tyc; Mitja N. P. Remus-Emsermann; Annemieke van der Wal; Michiel Vos; Mark W. Silby; Wietse de Boer

Background Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. Methodology and Principal Findings We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. Significance Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.

Collaboration


Dive into the Mark W. Silby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam S. Bitzer

University of Massachusetts Dartmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie S. Nicoll

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Lucy M. McCully

University of Massachusetts Dartmouth

View shared research outputs
Top Co-Authors

Avatar

Paolina Garbeva

American Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Brigham

University of Massachusetts Dartmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanni Bucci

University of Massachusetts Dartmouth

View shared research outputs
Researchain Logo
Decentralizing Knowledge