Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Zoller is active.

Publication


Featured researches published by Mark Zoller.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Human receptors for sweet and umami taste

Xiaodong Li; Lena Staszewski; Hong Xu; Kyle Durick; Mark Zoller; Elliot Adler

The three members of the T1R class of taste-specific G protein-coupled receptors have been hypothesized to function in combination as heterodimeric sweet taste receptors. Here we show that human T1R2/T1R3 recognizes diverse natural and synthetic sweeteners. In contrast, human T1R1/T1R3 responds to the umami taste stimulus l-glutamate, and this response is enhanced by 5′-ribonucleotides, a hallmark of umami taste. The ligand specificities of rat T1R2/T1R3 and T1R1/T1R3 correspond to those of their human counterparts. These findings implicate the T1Rs in umami taste and suggest that sweet and umami taste receptors share a common subunit.


Cell | 1987

Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase

T. Toda; S. Cameron; P. Sass; Mark Zoller; Michael Wigler

We have isolated three genes (TPK1, TPK2, and TPK3) from the yeast S. cerevisiae that encode the catalytic subunits of the cAMP-dependent protein kinase. Gene disruption experiments demonstrated that no two of the three genes are essential by themselves but at least one TPK gene is required for a cell to grow normally. Comparison of the predicted amino acid sequences of the TPK genes indicates conserved and variable domains. The carboxy-terminal 320 amino acid residues have more than 75% homology to each other and more than 50% homology to the bovine catalytic subunit. The amino-terminal regions show no homology to each other and are heterogeneous in length. The TPK1 gene carried on a multicopy plasmid can suppress both a temperature-sensitive ras2 gene and adenylate cyclase gene.


Molecular and Cellular Biology | 1987

Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae

T. Toda; S. Cameron; P. Sass; Mark Zoller; John D. Scott; B. McMullen; Mary Y. Hurwitz; E. G. Krebs; Michael Wigler

We have cloned a gene (BCY1) from the yeast Saccharomyces cerevisiae that encodes a regulatory subunit of the cyclic AMP-dependent protein kinase. The encoded protein has a structural organization similar to that of the RI and RII regulatory subunits of the mammalian cyclic AMP-dependent protein kinase. Strains of S. cerevisiae with disrupted BCY1 genes do not display a cyclic AMP-dependent protein kinase in vitro, fail to grow on many carbon sources, and are exquisitely sensitive to heat shock and starvation.


Cell | 1987

The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway

Daniel Broek; T. Toda; T. Michaeli; Lonny Levin; C. Birchmeier; Mark Zoller; Scott Powers; Michael Wigler

The gene corresponding to the S. cerevisiae cell division cycle mutant cdc25 has been cloned and sequenced, revealing an open reading frame encoding a protein of 1589 amino acids that contains no significant homologies with other known proteins. Cells lacking CDC25 have low levels of cyclic AMP and decreased levels of Mg2+-dependent adenylate cyclase activity. The lethality resulting from disruption of the CDC25 gene can be suppressed by the presence of the activated RAS2val19 gene, but not by high copy plasmids expressing a normal RAS2 or RAS1 gene. These results suggest that normal RAS is dependent on CDC25 function. Furthermore, mutationally activated alleles of CDC25 are capable of inducing a set of phenotypes similar to those observed in strains containing a genetically activated RAS/adenylate cyclase pathway, suggesting that CDC25 encodes a regulatory protein. We propose that CDC25 regulates adenylate cyclase by regulating the guanine nucleotide bound to RAS proteins.


Nature | 1995

Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor

Marcos Hatada; Xiaode Lu; Ellen R. Laird; Jeremy B. A. Green; Jay P. Morgenstern; Meizhen Lou; Chris S. Marr; Tom Phillips; Mary K. Ram; Kelly Theriault; Mark Zoller; Jennifer L. Karas

The crystal structure of the tandem SH2 domains of human ZAP-70 in complex with a peptide derived from the ζ-subunit of the T-cell receptor reveals an unanticipated interaction between the two domains. A coiled coil of α-helices connects the two SH2 domains, producing an interface that constitutes one of the two critical phosphotyrosine binding sites. These and other unique features provide the molecular basis for highly selective association of ZAP-70 with the T-cell receptor.


The EMBO Journal | 1994

Identification of Src, Fyn, Lyn, PI3K and Abl SH3 domain ligands using phage display libraries.

Richard J. Rickles; Martyn C. Botfield; Zhigang Weng; J. A. Taylor; O. M. Green; Joan S. Brugge; Mark Zoller

Many proteins involved in intracellular signal transduction contain a small, 50‐60 amino acid domain, termed the Src homology 3 (SH3) domain. This domain appears to mediate critical protein‐protein interactions that are involved in responses to extracellular signals. Previous studies have shown that the SH3 domains from several proteins recognize short, contiguous amino acid sequences that are rich in proline residues. While all SH3 recognition sequences identified to date share a conserved P‐X‐X‐P motif, the sequence recognition specificity of individual SH3 domains is poorly understood. We have employed a novel modification of phage display involving biased libraries to identify peptide ligands of the Src, Fyn, Lyn, PI3K and Abl SH3 domains. With biased libraries, we probed SH3 recognition over a 12 amino acid window. The Src SH3 domain prefers the sequence XXXRPLPPLPXP, Fyn prefers XXXRPLPP(I/L)PXX, Lyn prefers RXXRPLPPLPXP, PI3K prefers RXXRPLPPLPP while the Abl SH3 domain selects phage containing the sequence PPPYPPPP(I/V)PXX. We have also analysed the binding properties of Abl and Src SH3 ligands. We find that although the phage‐displayed Abl and Src SH3 ligands are proline rich, they are distinct. In surface plasmon resonance binding assays, these SH3 domains displayed highly selective binding to their cognate ligands when the sequences were displayed on the surface of the phage or as synthetic peptides. The selection of these high affinity SH3 peptide ligands provides valuable information on the recognition motifs of SH3 domains, serve as new tools to interfere with the cellular functions of SH3 domain‐mediated processes and form the basis for the design of SH3‐specific inhibitors of disease pathways.


Cell | 1988

cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae

S. Cameron; Lonny Levin; Mark Zoller; Michael Wigler

Genes encoding the regulatory (BCY1) and catalytic (TPK1, TPK2, and TPK3) subunits of the cAMP-dependent protein kinase (cAPK) are found in S. cerevisiae. bcy1- yeast strains do not respond properly to nutrient conditions. Unlike wild type, bcy1- strains do not accumulate glycogen, form spores, or become resistant to heat shock when nutrient limited. We have isolated mutant TPK genes that suppress all of the bcy1- defects. The mutant TPK genes appear to encode functionally attenuated catalytic subunits of the cAPK. bcy1- yeast strains containing the mutant TPK genes respond appropriately to nutrient conditions, even in the absence of CDC25, both RAS genes, or CYR1. Together, these genes encode the known components of the cAMP-generating machinery. The results indicate that cAMP-independent mechanisms must exist for regulating glycogen accumulation, sporulation, and the acquisition of thermotolerance in S. cerevisiae.


Trends in Biochemical Sciences | 1993

A template for the protein kinase family

Susan S. Taylor; Daniel R. Knighton; Jianhua Zheng; Janusz M. Sowadski; Craig S. Gibbs; Mark Zoller

The crystal structure of the catalytic subunit of cAMP-dependent protein kinase, complexed with ATP and a 20-residue inhibitor peptide, is reviewed and correlated with chemical and genetic data. The striking convergence of the structure with the biochemistry and genetics provides for the first time a molecular basis for understanding how this enzyme functions, as well as an explanation for the highly conserved residues that are scattered throughout the molecule. Because these residues probably serve a common role in all eukaryotic protein kinases, this first protein kinase structure serves as a general template for the entire family of enzymes.


Molecular and Cellular Biology | 1995

Interaction of p72syk with the gamma and beta subunits of the high-affinity receptor for immunoglobulin E, Fc epsilon RI.

L Shiue; J Green; O M Green; Jennifer L. Karas; J P Morgenstern; Mary K. Ram; M K Taylor; Mark Zoller; L D Zydowsky; J B Bolen

Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Molecular mechanism of the sweet taste enhancers

Feng Zhang; Boris Klebansky; Richard M. Fine; Haitian Liu; Hong Xu; Guy Servant; Mark Zoller; Catherine Tachdjian; Xiaodong Li

Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.

Collaboration


Dive into the Mark Zoller's collaboration.

Top Co-Authors

Avatar

Fernando Echeverri

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Guy Servant

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Zlotnik

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael Wigler

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge