Markéta Julinová
Tomas Bata University in Zlín
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markéta Julinová.
Water Science and Technology | 2009
M. Muchová; Jan Růžička; Markéta Julinová; M. Doležalová; Josef Houser; Marek Koutný; Leona Buňková
Owing to increasing amounts of xanthan and gellan in food, cosmetics and pharmaceuticals, as well as in some technical spheres, studies were carried out on the xanthan and gellan degrading bacteria present in activated sludge. The activated sludge used in the study was able to degrade both carbohydrates over 7 days, with levels of xanthan and gellan utilizing microbes estimated at 10(5) cells/g of dry sludge weight. Isolating key degrading bacteria revealed the important role of genus Paenibacillus in xanthan degradation and prosthecate bacterium Verrucomicrobium sp. GD, which was capable of gellan utilization. Further tests performed with both strains showed they were able to degrade other types of carbohydrate polymers, and that Verrucomicrobium sp. GD did not possess extracellular free gellan depolymerase.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2012
Roman Slavík; Markéta Julinová; Martina Labudíková
Screening of the Spatial Distribution of Risk Metals in Topsoil from an Industrial Complex For the sustainable development of urban areas, it is necessary to identify if environmental pollution exists and where hot spot pollution sources lie. In this study, 280 topsoil samples were collected from an industry estate in Zlin (the Czech Republic). In these samples, the presence of toxic metal was analyzed by energy dispersed X-Ray fluorescence (ED-XRF), and statistical analysis revealed that the major anthropogenic contaminants in the topsoil were Pb, Zn and Sn. Further contaminant analysis by atomic absorption spectrometry (AAS) determined the maximum contents of 28558.47 mg/kg for Pb, 1132.35 mg/kg for Sn and 2865.22 mg/kg for Zn in selected topsoil samples. According to soil pollution index results, the main proportion of topsoil is contaminated, with the possible sources of contamination being traffic and a nearby municipal heating plant. This study proves that the combination of preliminary ED-XRF topsoil analysis, a multivariative statistical approach, AAS analysis and the geographical information system (GIS) is effective and together form a powerful tool for mapping topsoil contamination and conducting an environmental risk assessment. Przestrzenny rozkład metali niebezpiecznych w powierzchniowej warstwie gleby terenów uprzemysłowionych Dla zrównoważonego rozwoju obszarów miejskich istotna jest identyfikacja istniejących zanieczyszczeń środowiska i ich źródeł. Do badań pobrano 280 próbek wierzchnich warstw gleby z terenów zurbanizowanych miasta Zlin (Republika Czeska). W próbkach określono zawartość metali ciężkich metodą rentgenowskiej analizy fluorescencyjnej (ED-XRF). Na podstawie analizy statystycznej otrzymanych wyników stwierdzono, że główne zanieczyszczenia antropogenne w wierzchnich warstwach gleby to Pb, Zn i Sn. Dalsza analiza zanieczyszczeń metodą absorpcyjnej spektrometrii atomowej (AAS) pozwoliła na określenie maksymalnych stężeń tych analitów w próbkach: 28558,47 mg/kg dla Pb, 1132,35 mg/kg dla Sn i 2865,22 mg/kg Zn. Na podstawie przeprowadzonych badań stwierdzono, że główne źródła zanieczyszczeń to ruch samochodowy oraz pobliska ciepłownia miejska. Przeprowadzone badania dowodzą, że połączenie wstępnej analizy gleb metodą ED-XRF, metod statystyki wielowymiarowej, analizy AAS i Systemu Informacji Geograficznej (GIS) jest skutecznym narzędziem oceny zanieczyszczenia wierzchniej warstwy gleby i oceny ryzyka dla środowiska.
Water Science and Technology | 2015
Karel Křížek; Jan Růžička; Markéta Julinová; Lucie Husárová; Josef Houser; Petra Jančová
N-methyl-2-pyrrolidone (NMP) is a widely used solvent for many organic compounds and a component found in a vast array of chemical preparations. For this research paper, NMP degrading bacteria were isolated from two samples of activated sludge. They pertained to both Gram-negative and Gram-positive members, and belong to the Pseudomonas, Paracoccus, Acinetobacter and Rhodococcus genera. All the strains utilized 300 mg/L of NMP as the only source of carbon, energy and nitrogen over several days, and they were shown to additionally be able to degrade N-acetylphenylalanine (NAP). The growth of all the isolated strains was recorded at different NMP concentrations, to a maximum of 20 g/L.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2013
Markéta Julinová; Jan Kupec; Roman Slavík; Maria Vaskova
Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation. Abstrakt Syntetyczny polimer, poliwinylopirolidon (PVP - E 1201), znajduje zastosowanie przede wszystkim w przemyśle farmaceutycznym i spożywczym ze względu na jego odporność i brak toksyczności dla organizmów. Po spożyciu substancja ta przechodzi przez organizm niezmieniona. W związku z tym, że w procesie przetwarzania odpadów w komunalnym systemie oczyszczalni ścieków (OŚ) polimer ten nie ulega rozkładowi biologicznemu ani nie jest znacząco sorbowany w osadzie czynnym, może on gromadzić się w środowisku naturalnym. Ze względu na istnienie tych problemów w artykule przedstawiono możliwości aerobowej inicjacji biodegradacji PVP w obecności osadu czynnego miejskiej oczyszczalni ścieków. Jako inicjatory procesu biodegradacji zostały wybrane następujące środki: kosubstraty, akryloamid, N-acetylofenyloalanina i 1-metylo-2-pirolidon, substancje o strukturze podobnej do monomeru PVP. Biodegradację PVP w obecności kosubstratów oceniano na podstawie biologicznego zapotrzebowania na tlen (BOD), określonego za pomocą respirometru MicroOxymax O2/CO2/CH4. Całkowite stężenie substratu w zawiesinie wynosiło 400 mg · dm-3 dla stosunku PVP i kosubstratu wynoszącego 1:1 oraz dla stężenia suchego osadu czynnego wynoszącego 500 mg · dm-3. Chociaż nawet w tym układzie nie stwierdzono wzrostu biodegradacji samego PVP w obecności kosubstratu, to sam akryloamid okazał się najbardziej efektywnym rodzajem podłoża. Niemniej jednak, zauważony spadek nachylenia krzywych biodegradacji w czasie może wskazywać, że zachodzi proces rozkładu pierwotnego, który wiąże się z produkcją metabolitów hamujących aktywowane mikroorganizmy osadu. Otrzymane produkty nie zostały zidentyfikowane na tym etapie badań.
Chemical Papers | 2017
Martina Vyoralová; Roman Slavík; Markéta Julinová; Jarmila Vilcakova
This paper describes the influence of polyaniline (PANI) nanoparticles prepared in the presence of the nitrilotriacetic acid (NTA) in comparison with PANI prepared by standard techniques, on mixed microbial cultures in the form of a biological extract from soil and activated sludge and partially digested sludge, both sourced from a municipal wastewater treatment plant. The presence of PANI prepared by standard techniques in aqueous environment has a negative effect on the activity of mixed microbial cultures in the form of activated sludge, digested sludge (anaerobic conditions), and natural soil. According to biological oxygen demand (BOD) values—respirometric test, the slight inhibiting effect of nanoparticles is attributed to impurities and oligomers from aniline polymerization. The use of NTA in the production of PANI, resulted in nanotubes with channels through which NTA is incorporated into the structure. A sample thus obtained shows higher values of BOD, which is associated with the fact that NTA is released from PANI nanotube channels followed by its biodegradation.
Journal of Polymers and The Environment | 2018
Markéta Julinová; Roman Slavík; Martina Vyoralová; Alena Kalendova; Pavol Alexy
The demand for biodegradable plastic material is increasing worldwide. However, the cost remains high in comparison with common forms of plastic. Requirements comprise low cost, good UV-stability and mechanical properties, as well as solubility and water uptake lead to the preparation of multi-component polymer blends based on polyvinyl alcohol and starch in combination with waste products that are hard to utilize—waste lignin and hydrolysate extracted from chromium tanned waste. Surprisingly the addition of such waste products into PVA gives rise to blends with better biodegradability than commercial PVA in an aquatic aerobic environment with non-adapted activated sludge. These blends also exhibited greater solubility in the water and UV stability than commercial PVA. Tests on the processing properties of the blends (melt flow index, tensile strength and elongation at break of the films) as well as their mechanical properties showed that materials based on these blends might be applied in agriculture (for example as the systems for controlled-release pesticide or fertilizer) and, somewhat, in the packaging sector.
Science and Engineering of Composite Materials | 2018
Martin Jurča; Markéta Julinová; Roman Slavík
Abstract This work focuses on polyvinyl alcohol (PVA) biodegradation in the presence of mineral clays in an aqueous aerobic environment. PVA with a degree of hydrolysis of 88% and 72% was used for the experiments. The selected group of mineral clays (nanofillers for polymers) of montmorillonite (MMT) Cloisite® Na+; organo-modified montmorillonite (OMMT) Cloisite® 20A, Cloisite® 30B; waste kaolin; kaolin; and zeolites were prepared by synthesis of the aforementioned kaolins. The level of biodegradation was measured using a respirometer, Micro-Oxymax, and evaluated according to CO2 production. Results of this test indicate a negative effect on PVA biodegradability in the presence of MMT Cloisite® Na+ and Cloisite® 30B. It has been found that PVA biodegradability in the presence of no adapted inoculum was adversely affected by the biocidal effects of the organic modifier of Cloisite® 30B. In this case, PVA 88-8 biodegradation decreased by 71% and PVA 72-10 biodegradation dropped by 58%. Furthermore, the sorption of PVA on the Cloisite® Na+ in the range of 40%–45% was demonstrated in the following research.
Journal of Environmental Management | 2018
Markéta Julinová; Ludmila Vaňharová; Martin Jurča
This paper describes a potential environmental problem closely linked with the global production of water-soluble polymers such as polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Both polymers make up the components of a multitude of products commonly utilized by industries and households. Hence, such a widespread use of PVA and PVP in the industrial sector and among consumers (the concentration of PVP in urban wastewater is approximately 7 mg/L) could pose a considerable problem, particularly to the environment. To this end, many publications have recently highlighted the poor biodegradability of PVA, in principle influenced by numerous biotic and abiotic factors. Facts published on the environmental fate of PVP have been scant, basically reporting that it is a biologically resistant polymer. As a result, the commercially produced water-soluble polymers of PVA and PVP are essentially non-biodegradable and possess the capacity to accumulate in virtually all environmental media. Consequently, there is a chance of heightened risk to the very environmental constituents in which PVA and PVP accumulate, depending on the routes of entry and transformation processes underway in such constituents of the ecosystem. This assumption is confirmed by the findings of initial research, which is worrying. Herein, PVA was detected in a soil environment, while a relatively high concentration of PVP was found in river water. A review of the literature was conducted to summarize the current state of knowledge concerning the fate of PVA and PVP in various environments, thereby also discerning potential solutions to tackle such dangers. This paper proposes methods to enhance the biodegradability of materials containing such materials; for PVA this means utilizing a suitable polysaccharide, whereas for PVP this pertains to actuating applications that induce substances to degrade. Accordingly, while it is understandable that this work cannot fully address all the issues associated with polymeric xenobiotics, it can still serve as a guide to discerning an economically viable solution, and provide a foundation for further research.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2017
Ludmila Vanharova; Markéta Julinová; Roman Slavík
Abstract The research deals with biodegradation of films prepared from polyvinylpyrrolidone and polylactic acid (PVP/PLA). Biodegradation of PVP/PLA films was supported by the following additives: 1-methyl-2-pyrrolidone, 1-octyl-2-pyrrolidone, acrylamide and N-acetyl-L-phenylalanine according to the previous study. The films were prepared by a solvent casting technique. Biodegradation was observed using the respirometric method in different environments. The films subjected to biodegradation were analyzed by scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that the films are substantially degraded, but not in the biological way; PVP was quickly removed in presence of water because of its easy solubility. In contrast, this fact could support biodegradation of PLA, which becomes more available for microorganisms when PVP leaves PLA matrix.
Journal of Environmental Management | 2012
Markéta Julinová; Roman Slavík