Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Arndt is active.

Publication


Featured researches published by Markus Arndt.


Nature Communications | 2011

Quantum interference of large organic molecules

Stefan Gerlich; Sandra Eibenberger; Mathias Tomandl; Stefan Nimmrichter; Paul J. Fagan; Jens Tüxen; Marcel Mayor; Markus Arndt

The wave nature of matter is a key ingredient of quantum physics and yet it defies our classical intuition. First proposed by Louis de Broglie a century ago, it has since been confirmed with a variety of particles from electrons up to molecules. Here we demonstrate new high-contrast quantum experiments with large and massive tailor-made organic molecules in a near-field interferometer. Our experiments prove the quantum wave nature and delocalization of compounds composed of up to 430 atoms, with a maximal size of up to 60 Å, masses up to m=6,910 AMU and de Broglie wavelengths down to λdB=h/mv≃1 pm. We show that even complex systems, with more than 1,000 internal degrees of freedom, can be prepared in quantum states that are sufficiently well isolated from their environment to avoid decoherence and to show almost perfect coherence.


Physical Review Letters | 2002

Matter-wave interferometer for large molecules.

Björn Brezger; Lucia Hackermüller; Stefan Uttenthaler; Julia Petschinka; Markus Arndt; Anton Zeilinger

We demonstrate a near-field Talbot-Lau interferometer for C70 fullerene molecules. Such interferometers are particularly suitable for larger masses. Using three free-standing gold gratings of 1 microm period and a transversally incoherent but velocity-selected molecular beam, we achieve an interference fringe visibility of 40% with high count rate. Both the high visibility and its velocity dependence are in good agreement with a quantum simulation that takes into account the van der Waals interaction of the molecules with the gratings and are in striking contrast to a classical moiré model.


Nature | 2004

Decoherence of matter waves by thermal emission of radiation

Lucia Hackermüller; Björn Brezger; Anton Zeilinger; Markus Arndt

Emergent quantum technologies have led to increasing interest in decoherence—the processes that limit the appearance of quantum effects and turn them into classical phenomena. One important cause of decoherence is the interaction of a quantum system with its environment, which ‘entangles’ the two and distributes the quantum coherence over so many degrees of freedom as to render it unobservable. Decoherence theory has been complemented by experiments using matter waves coupled to external photons or molecules, and by investigations using coherent photon states, trapped ions and electron interferometers. Large molecules are particularly suitable for the investigation of the quantum–classical transition because they can store much energy in numerous internal degrees of freedom; the internal energy can be converted into thermal radiation and thus induce decoherence. Here we report matter wave interferometer experiments in which C70 molecules lose their quantum behaviour by thermal emission of radiation. We find good quantitative agreement between our experimental observations and microscopic decoherence theory. Decoherence by emission of thermal radiation is a general mechanism that should be relevant to all macroscopic bodies.


Physical Review Letters | 2003

Wave Nature of Biomolecules and Fluorofullerenes

Lucia Hackermüller; Stefan Uttenthaler; Elisabeth Reiger; Björn Brezger; Anton Zeilinger; Markus Arndt

We demonstrate quantum interference for tetraphenylporphyrin, the first biomolecule exhibiting wave nature, and for the fluorofullerene C60F48 using a near-field Talbot-Lau interferometer. For the porphyrins, which are distinguished by their low symmetry and their abundant occurrence in organic systems, we find the theoretically expected maximal interference contrast and its expected dependence on the de Broglie wavelength. For C60F48, the observed fringe visibility is below the expected value, but the high contrast still provides good evidence for the quantum character of the observed fringe pattern. The fluorofullerenes therefore set the new mark in complexity and mass (1632 amu) for de Broglie wave experiments, exceeding the previous mass record by a factor of 2.


American Journal of Physics | 2003

Quantum interference experiments with large molecules

Olaf Nairz; Markus Arndt; Anton Zeilinger

Wave–particle duality is frequently the first topic students encounter in elementary quantum physics. Although this phenomenon has been demonstrated with photons, electrons, neutrons, and atoms, the dual quantum character of the famous double-slit experiment can be best explained with the largest and most classical objects, which are currently the fullerene molecules. The soccer-ball-shaped carbon cages C60 are large, massive, and appealing objects for which it is clear that they must behave like particles under ordinary circumstances. We present the results of a multislit diffraction experiment with such objects to demonstrate their wave nature. The experiment serves as the basis for a discussion of several quantum concepts such as coherence, randomness, complementarity, and wave–particle duality. In particular, the effect of longitudinal (spectral) coherence can be demonstrated by a direct comparison of interferograms obtained with a thermal beam and a velocity selected beam in close analogy to the usua...


Physical Review Letters | 2003

Collisional decoherence observed in matter wave interferometry.

Stefan Uttenthaler; Björn Brezger; Lucia Hackermüller; Markus Arndt; Anton Zeilinger

We study the loss of spatial coherence in the extended wave function of fullerenes due to collisions with background gases. From the gradual suppression of quantum interference with increasing gas pressure we are able to support quantitatively both the predictions of decoherence theory and our picture of the interaction process. We thus explore the practical limits of matter wave interferometry at finite gas pressures and estimate the required experimental vacuum conditions for interferometry with even larger objects.


Hfsp Journal | 2009

Quantum physics meets biology

Markus Arndt; Thomas Juffmann; Vlatko Vedral

Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world‐view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a “pedestrian guide” to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future “quantum biology,” its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.


Reviews of Modern Physics | 2012

Colloquium: Quantum interference of clusters and molecules

Stefan Gerlich; Philipp Haslinger; Stefan Nimmrichter; Markus Arndt

We review recent progress and future prospects of matter wave interferometry with complex organic molecules and inorganic clusters. Three variants of a near-field interference effect, based on diffraction by material nanostructures, at optical phase gratings, and at ionizing laser fields are considered. We discuss the theoretical concepts underlying these experiments and the experimental challenges. This includes optimizing interferometer designs as well as understanding the role of decoherence. The high sensitivity of matter wave interference experiments to external perturbations is demonstrated to be useful for accurately measuring internal properties of delocalized nanoparticles. We conclude by investigating the prospects for probing the quantum superposition principle in the limit of high particle mass and complexity.


Nature Physics | 2007

A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules

Stefan Gerlich; Lucia Hackermüller; Alexander Stibor; Hendrik Ulbricht; Michael Gring; Fabienne Goldfarb; Tim Savas; Marcel Müri; Marcel Mayor; Markus Arndt

Research on matter waves is a thriving field of quantum physics and has recently stimulated many investigations with electrons1, neutrons2, atoms3, Bose-condensed ensembles4, cold clusters5 and hot molecules6. Coherence experiments with complex objects are of interest for exploring the transition to classical physics7,8,9, for measuring molecular properties10, and they have even been proposed for testing new models of space-time11. For matter-wave experiments with complex molecules, the strongly dispersive effect of the interaction between the diffracted molecule and the grating wall is a major challenge because it imposes enormous constraints on the velocity selection of the molecular beam12. Here, we describe the first experimental realization of a new set-up that solves this problem by combining the advantages of a so-called Talbot–Lau interferometer13 with the benefits of an optical phase grating.


Nature Physics | 2014

Testing the limits of quantum mechanical superpositions

Markus Arndt

Testing the limits of the quantum mechanical description of nature has become a subject of intense experimental interest. Recent advances in investigating macroscopic quantum superpositions are pushing these limits.

Collaboration


Dive into the Markus Arndt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Zeilinger

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge