Markus Betzinger
Forschungszentrum Jülich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Betzinger.
Journal of Physics: Condensed Matter | 2012
Christoph Friedrich; Markus Betzinger; Martin Schlipf; Stefan Blügel; Arno Schindlmayr
We present recent advances in numerical implementations of hybrid functionals and the GW approximation within the full-potential linearized augmented-plane-wave (FLAPW) method. The former is an approximation for the exchange–correlation contribution to the total energy functional in density-functional theory, and the latter is an approximation for the electronic self-energy in the framework of many-body perturbation theory. All implementations employ the mixed product basis, which has evolved into a versatile basis for the products of wave functions, describing the incoming and outgoing states of an electron that is scattered by interacting with another electron. It can thus be used for representing the nonlocal potential in hybrid functionals as well as the screened interaction and related quantities in GW calculations. In particular, the six-dimensional space integrals of the Hamiltonian exchange matrix elements (and exchange self-energy) decompose into sums over vector–matrix–vector products, which can be evaluated easily. The correlation part of the GW self-energy, which contains a time or frequency dependence, is calculated on the imaginary frequency axis with a subsequent analytic continuation to the real axis or, alternatively, by a direct frequency convolution of the Green function G and the dynamically screened Coulomb interaction W along a contour integration path that avoids the poles of the Green function. Hybrid-functional and GW calculations are notoriously computationally expensive. We present a number of tricks that reduce the computational cost considerably, including the use of spatial and time-reversal symmetries, modifications of the mixed product basis with the aim to optimize it for the correlation self-energy and another modification that makes the Coulomb matrix sparse, analytic expansions of the interaction potentials around the point of divergence at k = 0, and a nested density and density-matrix convergence scheme for hybrid-functional calculations. We show CPU timings for prototype semiconductors and illustrative results for GdN and ZnO.
Physical Review B | 2011
Markus Betzinger; Christoph Friedrich; Stefan Blügel; Andreas Görling
We present a general numerical approach to construct local Kohn-Sham potentials from orbital-dependent functionals within the all-electron full-potential linearized augmented-plane-wave (FLAPW) method, in which core and valence electrons are treated on an equal footing. As a practical example, we present a treatment of the orbital-dependent exact-exchange (EXX) energy and potential. A formulation in terms of a mixed product basis, which is constructed from products of LAPW basis functions, enables a solution of the optimized-effective-potential (OEP) equation with standard numerical algebraic tools and without shape approximations for the resulting potential. We find that the mixed product and LAPW basis sets must be properly balanced to obtain smooth and converged EXX potentials without spurious oscillations. The construction and convergence of the exchange potential are analyzed in detail for diamond. Our all-electron results for C, Si, SiC, Ge, and GaAs semiconductors as well as Ne and Ar noble-gas solids are in very favorable agreement with plane-wave pseudopotential calculations. This confirms the adequacy of the pseudopotential approximation in the context of the EXX-OEP formalism and clarifies a previous contradiction between FLAPW and pseudopotential results.
Physical Review B | 2015
Fabien Tran; Markus Betzinger; Peter Blaha; Stefan Blügel
The exact-exchange (EXX) potential, which is obtained by solving the optimized-effective potential (OEP) equation, is compared to various approximate semilocal exchange potentials for a set of selected solids (C, Si, BN, MgO, Cu
Physical Review B | 2011
Martin Schlipf; Markus Betzinger; Christoph Friedrich; Marjana Ležaić; Stefan Blügel
_{2}
Physical Review B | 2016
Fabien Tran; Peter Blaha; Markus Betzinger; Stefan Blügel
O, and NiO). This is done in the framework of the linearized augmented plane-wave method, which allows for a very accurate all-electron solution of electronic structure problems in solids. In order to assess the ability of the semilocal potentials to approximate the EXX-OEP, we considered the EXX total energy, electronic structure, electric-field gradient, and magnetic moment. An attempt to parameterize a semilocal exchange potential is also reported.
Physical Review B | 2017
Priyanka Seth; Oleg E. Peil; Leonid Pourovskii; Markus Betzinger; Christoph Friedrich; Olivier Parcollet; Silke Biermann; Ferdi Aryasetiawan; Antoine Georges
We present an implementation of the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional within the full-potential linearized augmented-plane-wave (FLAPW) method. Pivotal to the HSE functional is the screened electron-electron interaction, which we separate into the bare Coulomb interaction and the remainder, a slowly varying function in real space. Both terms give rise to exchange potentials, which sum up to the screened nonlocal exchange potential of HSE. We evaluate the former with the help of an auxiliary basis, defined in such a way that the bare Coulomb matrix becomes sparse. The latter is computed in reciprocal space, exploiting its fast convergence behavior in reciprocal space. This approach is general and can be applied to a whole class of screened hybrid functionals. We obtain excellent agreement of band gaps and lattice constants for prototypical semiconductors and insulators with electronic-structure calculations using plane-wave or Gaussian basis sets. We apply the HSE hybrid functional to examine the ground-state properties of rocksalt GdN, which have been controversially discussed in literature. Our results indicate that there is a half-metal to insulator transition occurring between the theoretically optimized lattice constant at 0 K and the experimental lattice constant at room temperature. Overall, we attain good agreement with experimental data for band transitions, magnetic moments, and the Curie temperature.
Computer Physics Communications | 2013
Gregor Michalicek; Markus Betzinger; Christoph Friedrich; Stefan Blügel
In the search for an accurate and computationally efficient approximation to the exact exchange potential of Kohn-Sham density functional theory, we recently compared various semilocal exchange potentials to the exact one [F. Tran et al., Phys. Rev. B 91, 165121 (2015)]. It was concluded that the Becke-Johnson (BJ) potential is a very good starting point, but requires the use of empirical parameters to obtain good agreement with the exact exchange potential. In this work, we extend the comparison by considering the Krieger-Li-Iafrate (KLI) approximation, which is a beyond-semilocal approximation. It is shown that overall the KLI- and BJ-based potentials are the most reliable approximations to the exact exchange potential, however, sizable differences, especially for the antiferromagnetic transition-metal oxides, can be obtained.
Physical Review B | 2010
Markus Betzinger; Christoph Friedrich; Stefan Blügel
We compute from first principles the effective interaction parameters appropriate for a low-energy description of the rare-earth nickelate LuNiO3 involving the partially occupied eg states only. The calculation uses the constrained random-phase approximation and reveals that the effective on-site Coulomb repulsion is strongly reduced by screening effects involving the oxygen-p and nickel-t2g states. The long-range component of the effective low-energy interaction is also found to be sizable. As a result, the effective on-site interaction between parallel-spin electrons is reduced down to a small negative value. This validates effective low-energy theories of these materials that were proposed earlier. Electronic structure methods combined with dynamical mean-field theory are used to construct and solve an appropriate low-energy model and explore its phase diagram as a function of the on-site repulsion and Hunds coupling. For the calculated values of these effective interactions, we find that in agreement with experiments, LuNiO3 is a metal without disproportionation of the eg occupancy when considered in its orthorhombic structure, while the monoclinic phase is a disproportionated insulator. (Less)
Physical Review B | 2012
Markus Betzinger; Christoph Friedrich; Andreas Görling; Stefan Blügel
Abstract We analyze in detail the error that arises from the linearization in linearized augmented-plane-wave (LAPW) basis functions around predetermined energies E l and show that it can lead to undesirable dependences of the calculated results on method-inherent parameters such as energy parameters E l and muffin-tin sphere radii. To overcome these dependences, we evaluate approaches that eliminate the linearization error systematically by adding local orbitals (LOs) to the basis set. We consider two kinds of LOs: (i) constructed from solutions u l ( r , E ) to the scalar-relativistic approximation of the radial Dirac equation with E > E l and (ii) constructed from second energy derivatives ∂ 2 u l ( r , E ) / ∂ E 2 at E = E l . We find that the latter eliminates the error most efficiently and yields the density functional answer to many electronic and materials properties with very high precision. Finally, we demonstrate that the so constructed LAPW +LO basis shows a more favorable convergence behavior than the conventional LAPW basis due to a better decoupling of muffin-tin and interstitial regions, similarly to the related APW +lo approach, which, however, requires an extra set of LOs to reach the same total energy.
Physical Review B | 2016
Egor Trushin; Markus Betzinger; Stefan Blügel; Andreas Görling