Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Buchhaupt is active.

Publication


Featured researches published by Markus Buchhaupt.


Applied Microbiology and Biotechnology | 2015

Methylobacterium extorquens : methylotrophy and biotechnological applications

Andrea M. Ochsner; Frank Sonntag; Markus Buchhaupt; Jens Schrader; Julia A. Vorholt

Methylotrophy is the ability to use reduced one-carbon compounds, such as methanol, as a single source of carbon and energy. Methanol is, due to its availability and potential for production from renewable resources, a valuable feedstock for biotechnology. Nature offers a variety of methylotrophic microorganisms that differ in their metabolism and represent resources for engineering of value-added products from methanol. The most extensively studied methylotroph is the Alphaproteobacterium Methylobacterium extorquens. Over the past five decades, the metabolism of M. extorquens has been investigated physiologically, biochemically, and more recently, using complementary omics technologies such as transcriptomics, proteomics, metabolomics, and fluxomics. These approaches, together with a genome-scale metabolic model, facilitate system-wide studies and the development of rational strategies for the successful generation of desired products from methanol. This review summarizes the knowledge of methylotrophy in M. extorquens, as well as the available tools and biotechnological applications.


Journal of Biotechnology | 2014

Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production

Jules Beekwilder; Harmen M. van Rossum; Frank Koopman; Frank Sonntag; Markus Buchhaupt; Jens Schrader; Robert D. Hall; Dirk Bosch; Jack T. Pronk; Antonius J. A. van Maris; Jean-Marc Daran

The flavour and fragrance compound β-ionone, which naturally occurs in raspberry and many other fruits and flowers, is currently produced by synthetic chemistry. This study describes a synthetic biology approach for β-ionone production from glucose by Saccharomyces cerevisiae that is partially based on polycistronic expression. Experiments with model proteins showed that the T2A sequence of the Thosea asigna virus mediated efficient production of individual proteins from a single transcript in S. cerevisiae. Subsequently, three β-carotene biosynthesis genes from the carotenoid-producing ascomycete Xanthophyllomyces dendrorhous (crtI, crtE and crtYB) were expressed in S. cerevisiae from a single polycistronic construct. In this construct, the individual crt proteins were separated by T2A sequences. Production of the individual proteins from the polycistronic construct was confirmed by Western blot analysis and by measuring the production of β-carotene. To enable β-ionone production, a carotenoid-cleavage dioxygenase from raspberry (RiCCD1) was co-expressed in the β-carotene producing strain. In glucose-grown cultures with a second phase of dodecane, β-ionone and geranylacetone accumulated in the organic phase. Thus, by introducing a polycistronic construct encoding a fungal carotenoid pathway and an expression cassette encoding a plant dioxygenase, a novel microbial production system has been established for a fruit flavour compound.


PLOS ONE | 2009

Metabolite Profiling Uncovers Plasmid-Induced Cobalt Limitation under Methylotrophic Growth Conditions

Patrick Kiefer; Markus Buchhaupt; Philipp Christen; Björn Kaup; Jens Schrader; Julia A. Vorholt

Background The introduction and maintenance of plasmids in cells is often associated with a reduction of growth rate. The reason for this growth reduction is unclear in many cases. Methodology/Principal Findings We observed a surprisingly large reduction in growth rate of about 50% of Methylobacterium extorquens AM1 during methylotrophic growth in the presence of a plasmid, pCM80 expressing the tetA gene, relative to the wild-type. A less pronounced growth delay during growth under non-methylotrophic growth conditions was observed; this suggested an inhibition of one-carbon metabolism rather than a general growth inhibition or metabolic burden. Metabolome analyses revealed an increase in pool sizes of ethylmalonyl-CoA and methylmalonyl-CoA of more than 6- and 35-fold, respectively, relative to wild type, suggesting a strongly reduced conversion of these central intermediates, which are essential for glyoxylate regeneration in this model methylotroph. Similar results were found for M. extorquens AM1 pCM160 which confers kanamycin resistance. These intermediates of the ethylmalonyl-CoA pathway have in common their conversion by coenzyme B12-dependent mutases, which have cobalt as a central ligand. The one-carbon metabolism-related growth delay was restored by providing higher cobalt concentrations, by heterologous expression of isocitrate lyase as an alternative path for glyoxylate regeneration, or by identification and overproduction of proteins involved in cobalt import. Conclusions/Significance This study demonstrates that the introduction of the plasmids leads to an apparent inhibition of the cobalt-dependent enzymes of the ethylmalonyl-CoA pathway. Possible explanations are presented and point to a limited cobalt concentration in the cell as a consequence of the antibiotic stress.


Metabolic Engineering | 2015

Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol

Frank Sonntag; Cora Kroner; Patrice Lubuta; Rémi Peyraud; A. Horst; Markus Buchhaupt; Jens Schrader

Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.


PLOS ONE | 2014

Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification.

Markus Buchhaupt; Sunny Sharma; Stefanie Kellner; Stefanie Oswald; Melanie Paetzold; Christian Peifer; Peter Watzinger; Jens Schrader; Mark Helm; Karl-Dieter Entian

Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount of S. cerevisiae ribosomes are not methylated at 2′-O-ribose of A100 residue in the 18S rRNA. Furthermore, using LC-UV-MS/MS of a respective 18S rRNA fragment, we could not only corroborate the partial methylation at A100, but could also quantify the methylated versus non-methylated A100 residue. Here, we exhibit that only 68% of A100 in the 18S rRNA of S.cerevisiae are methylated at 2′-O ribose sugar. Polysomes also contain a similar heterogeneity for methylated Am100, which shows that 40S ribosome subunits with and without Am100 participate in translation. Introduction of a multicopy plasmid containing the corresponding methylation guide snoRNA gene SNR51 led to an increased A100 methylation, suggesting the cellular snR51 level to limit the extent of this modification. Partial rRNA modification demonstrates a new level of ribosome heterogeneity in eukaryotic cells that might have substantial impact on regulation and fine-tuning of the translation process.


Applied Microbiology and Biotechnology | 2012

Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase

Markus Buchhaupt; Jan Guder; M. M. W. Etschmann; Jens Schrader

Green notes are substances that characterize the aroma of freshly cut grass, cucumbers, green apples, and foliage. In plants, they are synthesized by conversion of linolenic or linoleic acid via the enzymes lipoxygenase (LOX) and hydroperoxide lyase (HPL) to short-chained aldehydes. Current processes for production of natural green notes rely on plant homogenates as enzyme sources but are limited by low enzyme concentration and low specificity. In an alternative approach, soybean LOX2 and watermelon HPL were overexpressed in Saccharomyces cerevisiae. After optimization of the expression constructs, a yeast strain coexpressing LOX and HPL was applied in whole cell biotransformation experiments. Whereas addition of linolenic acid to growing cultures of this strain yielded no products, we were able to identify high green note concentrations when resting cells were used. The primary biotransformation product was 3(Z)-hexenal, a small amount of which isomerized to 2(E)-hexenal. Furthermore, both aldehydes were reduced to the corresponding green note alcohols by endogenous yeast alcohol dehydrogenase to some extent. As the cosolvent ethanol was the source of reducing equivalents for green note alcohol formation, the hexenal/hexenol ratio could be influenced by the use of alternative cosolvents. Further investigations to identify the underlying mechanism of the rather low biocatalyst stability revealed a high toxicity of linolenic acid to yeast cells. The whole cell catalyst containing LOX and HPL enzyme activity described here can be a promising approach towards a highly efficient microbial green note synthesis process.


Applied Microbiology and Biotechnology | 2016

Biotechnological production of limonene in microorganisms

Esmer Jongedijk; Katarina Cankar; Markus Buchhaupt; Jens Schrader; Harro J. Bouwmeester; Jules Beekwilder

This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial production of limonene would be interesting. Since limonene can be derivatized to high-value compounds, microbial platforms also have a great potential beyond just producing limonene. In this review, we discuss the ins and outs of microbial limonene production in comparison with plant-based and chemical production. Achievements and specific challenges for microbial production of limonene are discussed, especially in the light of bulk applications such as biomaterials.


Journal of Agricultural and Food Chemistry | 2017

Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds

Florence Schempp; Laura Drummond; Markus Buchhaupt; Jens Schrader

Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.


Journal of Molecular Microbiology and Biotechnology | 2013

Effect of Linoleic Acids on the Release of β-Carotene from Carotenoid-Producing Saccharomyces cerevisiae into Sunflower Oil

Frank Sonntag; Isabell Schmidt; Markus Buchhaupt; Jens Schrader

In situ extraction is important for highly productive and cost-efficient processes in industrial biotechnology, but it is difficult to establish for intracellularly accumulating carotenoids like β-carotene. In this study, the organic solvent used in aqueous-organic two-phase media exerted a strong effect on the release of β-carotene from recombinant yeast cells. The carotenoid-synthesizing Saccharomyces cerevisiae strain YB/I/E was cultivated in two-liquid-phase media with 20% dodecane or 20% sunflower oil. Up to 0.6 µg/ml β-carotene was released into sunflower oil, but less than 0.1 µg/ml into dodecane, although biocompatibility and solubility of β-carotene is appropriate for both solvents. Addition of linoleic acid, the main component of sunflower oil, to the dodecane phase increased the amount of β-carotene released, indicating that linoleic acid is the component responsible for the β-carotene release into sunflower oil. These findings demonstrate that the effect of the organic solvent should be taken into consideration for further research on in situ extraction of carotenoids.


PLOS ONE | 2013

Identification of a Caldariomyces fumago Mutant Secreting an Inactive Form of Chloroperoxidase Lacking the Heme Group and N-Glycans

Sonja Hüttmann; Markus Buchhaupt; Jens Schrader

By mutant colony screening of Caldariomyces fumago a mutant was isolated which was slightly greenish on fructose minimal medium and grew slower in comparison to the wild type. The supernatant samples lacked the Soret band typical for the heme group of the CPO and nearly no CPO activity was detected. SDS-PAGE analysis of mutant culture supernatant samples showed production of a 38–40 kDa protein while wild type samples contain the 42 kDa CPO protein. Protein identification using nanoLC-ESI-MS/MS was performed and based on three peptides the protein in the mutant culture was identified as CPO. No differences in the CPO gene sequences of wild type and mutant were found indicating a post-translational defect in protein maturation. Deglycosylation experiments using CPO from wild type and mutant were carried out. After removing N-linked oligosaccharides from wild type CPO a protein band at 38–40 kDa was detected. Our results reveal that the mutant protein lacks the heme group as well as the N-glycans.

Collaboration


Dive into the Markus Buchhaupt's collaboration.

Researchain Logo
Decentralizing Knowledge