Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus K. H. Malo is active.

Publication


Featured researches published by Markus K. H. Malo.


Bone | 2013

Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur

Markus K. H. Malo; Daniel Rohrbach; Hanna Isaksson; Juha Töyräs; Jukka S. Jurvelin; Inari S. Tamminen; Heikki Kröger; Kay Raum

Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, p<0.05). Regional variations in porosity were found in the neck (superior 13.1%; inferior 6.1%; anterior 10.1%; posterior 8.6%) and in the shaft (medial 9.5%; lateral 7.7%; anterior 8.6%; posterior 12.0%). In conclusion, significant variations in elastic coefficients were detected between femoral neck and shaft as well as between the quadrants of the cross-sections of neck and shaft. Moreover, an age-related increase in cortical porosity and a stiffening of the bone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics.


Osteoarthritis and Cartilage | 2015

Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate ligament transection

Cristina Florea; Markus K. H. Malo; Jari Rautiainen; J.T.A. Mäkelä; James M. Fick; Miika T. Nieminen; Jukka S. Jurvelin; Arjana Davidescu; Rami K. Korhonen

OBJECTIVE To quantify early osteoarthritic-like changes in the structure and volume of subchondral bone plate and trabecular bone and properties of articular cartilage in a rabbit model of osteoarthritis (OA) induced by anterior cruciate ligament transection (ACLT). METHODS Left knee joints from eight skeletally mature New Zealand white rabbits underwent ACLT surgery, while the contralateral (CTRL) right knee joints were left unoperated. Femoral condyles were harvested 4 weeks after ACLT. Micro-computed tomography imaging was applied to evaluate the structural properties of subchondral bone plate and trabecular bone. Additionally, biomechanical properties, structure and composition of articular cartilage were assessed. RESULTS As a result of ACLT, significant thinning of the subchondral bone plate (P < 0.05) was accompanied by significantly reduced trabecular bone volume fraction and trabecular thickness in the medial femoral condyle compartment (P < 0.05), while no changes were observed in the lateral compartment. In both lateral and medial femoral condyles, the equilibrium modulus and superficial zone proteoglycan (PG) content were significantly lower in ACLT than CTRL joint cartilage (P < 0.05). Significant alterations in the collagen orientation angle extended substantially deeper into cartilage from the ACLT joints in the lateral femoral condyle relative to the medial condyle compartment (P < 0.05). CONCLUSIONS In this model of early OA, significant changes in volume and microstructure of subchondral bone plate and trabecular bone were detected only in the femoral medial condyle, while alterations in articular cartilage properties were more severe in the lateral compartment. The former finding may be associated with reduced joint loading in the medial compartment due to ACLT, while the latter finding reflects early osteoarthritic changes in the lateral compartment.


Bone | 2014

Ultrasound Backscatter Measurements of Intact Human Proximal Femurs - Relationships of ultrasound parameters with tissue structure and mineral density.

Markus K. H. Malo; J. Töyräs; Janne Karjalainen; Hanna Isaksson; Ossi Riekkinen; Jukka S. Jurvelin

Ultrasound reflection and backscatter parameters are related to the mechanical and structural properties of bone in vitro. However, the potential of ultrasound reflection and backscatter measurements has not been tested with intact human proximal femurs ex vivo. We hypothesize that ultrasound backscatter can be measured from intact femurs and that the measured backscattered signal is associated with cadaver age, bone mineral density (BMD) and trabecular bone microstructure. In this study, human femoral bones of 16 male cadavers (47.0±16.1 years, range: 21-77 years) were investigated using pulse-echo ultrasound measurements at the femoral neck in the antero-posterior direction and at the trochanter major in the anteroposterior and lateromedial directions. Recently introduced ultrasound backscatter parameters, independent of cortical thickness, e.g., time slope of apparent integrated backscatter (TSAB) and mean of the backscatter difference technique (MBD) were obtained and compared with the structural properties of trabecular bone samples, extracted from the locations of ultrasound measurements. Moreover, more conventional backscatter parameters, e.g., apparent integrated backscatter (AIB) and frequency slope of apparent integrated backscatter (FSAB) were analyzed. Bone mineral density of the intact femurs was evaluated using dual energy X-ray absorptiometry (DXA). AIB and MDB measured from the femoral neck correlated significantly (p<0.01) with the neck BMD (R2=0.44 and 0.45), cadaver age (R2=0.61 and 0.41) and several structural parameters, e.g., bone volume fraction (R2=0.33 and 0.39, p<0.05 and p<0.01), respectively. To conclude, ultrasound backscatter parameters, measured from intact proximal femurs, are significantly related (p<0.05) to structural properties and mineral density of trabecular bone.


Journal of Biomechanics | 2015

Relationships between tissue composition and viscoelastic properties in human trabecular bone

Xiaowei Ojanen; Hanna Isaksson; Juha Töyräs; Mikael J. Turunen; Markus K. H. Malo; A Halvari; Jukka S. Jurvelin

Trabecular bone is a metabolically active tissue with a high surface to volume ratio. It exhibits viscoelastic properties that may change during aging. Changes in bone properties due to altered metabolism are sensitively revealed in trabecular bone. However, the relationships between material composition and viscoelastic properties of bone, and their changes during aging have not yet been elucidated. In this study, trabecular bone samples from the femoral neck of male cadavers (n=21) aged 17-82 years were collected and the tissue level composition and its associations with the tissue viscoelastic properties were evaluated by using Raman microspectroscopy and nanoindentation, respectively. For composition, collagen content, mineralization, carbonate substitution and mineral crystallinity were evaluated. The calculated mechanical properties included reduced modulus (Er), hardness (H) and the creep parameters (E1, E2, η1and η2), as obtained by fitting the experimental data to the Burgers model. The results indicated that the creep parameters, E1, E2, η1and η2, were linearly correlated with mineral crystallinity (r=0.769-0.924, p<0.001). Creep time constant (η2/E2) tended to increase with crystallinity (r=0.422, p=0.057). With age, the mineralization decreased (r=-0.587, p=0.005) while the carbonate substitution increased (r=0.728, p<0.001). Age showed no significant associations with nanoindentation parameters. The present findings suggest that, at the tissue-level, the viscoelastic properties of trabecular bone are related to the changes in characteristics of bone mineral. This association may be independent of human age.


Ultrasound in Medicine and Biology | 2010

Numerical analysis of uncertainties in dual frequency bone ultrasound technique

Markus K. H. Malo; Janne Karjalainen; Hanna Isaksson; Ossi Riekkinen; Jukka S. Jurvelin; J. Töyräs

Quantitative ultrasound (QUS) measurements are used in the diagnostics of osteoporosis. However, the variation in the thickness and composition of the overlying soft tissue causes significant errors to the bone QUS parameters and diminishes the reliability of the technique in vivo. Recently, the dual frequency ultrasound (DFUS) technique was introduced to minimize the errors related to soft tissue effects. In this study, the significance of soft tissue induced errors and their elimination with the DFUS technique were simulated using the finite difference time domain technique. Furthermore, we investigated the potential of the DFUS corrected integrated reflection coefficient (IRC) of bone to detect changes in the cortical bone density. The effects of alterations in the thickness of fat and lean tissue layers and the inclination between the soft-tissues and between the soft tissue-bone layers were simulated. When the angle of the soft tissue interface was zero, i.e., perpendicular to the incident ultrasound beam, the DFUS-calculated soft tissue composition correlated highly linearly with the true soft tissue composition. The inclination between the soft tissue-bone layers was found to be critical. Even a 2-degree inclination between the soft tissue and the bone surface induced an almost 18% relative error in the corrected IRC. Increasing the inclination between the soft tissue layers increased the error in the DFUS-calculated lean and fat tissue thickness. This error was especially significant at inclination angles greater than 20 degrees. The significant soft tissue induced errors in IRC values (>300 %) could be effectively minimized (<10%) by means of the DFUS correction. Importantly, after the DFUS correction, physiologically relevant variation in the cortical bone density could be detected (p<0.05).


Journal of the Acoustical Society of America | 2016

Differences in acoustic impedance of fresh and embedded human trabecular bone samples—Scanning acoustic microscopy and numerical evaluation

Xiaowei Ojanen; Juha Töyräs; Satu I. Inkinen; Markus K. H. Malo; Hanna Isaksson; Jukka S. Jurvelin

Trabecular bone samples are traditionally embedded and polished for scanning acoustic microscopy (SAM). The effect of sample processing, including dehydration, on the acoustic impedance of bone is unknown. In this study, acoustic impedance of human trabecular bone samples (n = 8) was experimentally assessed before (fresh) and after embedding using SAM and two-dimensional (2-D) finite-difference time domain simulations. Fresh samples were polished with sandpapers of different grit (P1000, P2500, and P4000). Experimental results indicated that acoustic impedance of samples increased significantly after embedding [mean values 3.7 MRayl (fresh), 6.1 MRayl (embedded), p < 0.001]. After polishing with different papers, no significant changes in acoustic impedance were found, even though higher mean values were detected after polishing with finer (P2500 and P4000) papers. A linear correlation (r = 0.854, p < 0.05) was found between the acoustic impedance values of embedded and fresh bone samples polished using P2500 SiC paper. In numerical simulations dehydration increased the acoustic impedance of trabecular bone (38%), whereas changes in surface roughness of bone had a minor effect on the acoustic impedance (-1.56%/0.1 μm). Thereby, the numerical simulations corroborated the experimental findings. In conclusion, acoustic impedance measurement of fresh trabecular bone is possible and may provide realistic material values similar to those of living bone.


International Journal of Occupational Safety and Ergonomics | 2018

Infrared thermography reveals effect of working posture on skin temperature in office workers

Roope Lasanen; Markus K. H. Malo; Olavi Airaksinen; Jari Karhu; Juha Töyräs; Petro Julkunen

Introduction. Musculoskeletal symptoms related to using traditional computer workstations are common. Quantitative methods for measuring muscle stress and strain are needed to improve ergonomics of workstations. We hypothesize that infrared thermography (IRT) is suited for this purpose. Methods. This hypothesis was evaluated by estimating muscle activity in upright and traditional working postures with IRT and surface electromyography (sEMG). IRT and sEMG measurements were conducted in 14 female participants with both working postures. First, measurements with the traditional posture were performed. Later, participants had 1 month to adjust to the upright working posture before repeating the measurements. IRT images were acquired before and after a full working day, with sEMG recordings being conducted throughout the measurement days. Participants evaluated their neck pain severity using neck disability index (NDI) questionnaires before the first and after the second measurement day. Results. Spatial variation in upper back temperature was higher (p = 0.008) when working in traditional posture and the upright working posture reduced (p < 0.05) upper back muscle activity. The NDI was significantly lower (p = 0.003) after working in the upright posture. Conclusion. IRT was found suitable for evaluating muscle activity and upright working posture to reduce the NDI and muscle activity in the upper back.


Journal of Biomechanical Engineering-transactions of The Asme | 2017

Evaluation of the Effect of Bariatric Surgery-Induced Weight Loss on Knee Gait and Cartilage Degeneration

Mimmi K. Liukkonen; Mika E. Mononen; Paavo Vartiainen; P. Kaukinen; Timo Bragge; Juha-Sampo Suomalainen; Markus K. H. Malo; Sari Venesmaa; Pirjo Käkelä; Jussi Pihlajamäki; Pasi A. Karjalainen; Jari Arokoski; Rami K. Korhonen

The objective of the study was to investigate the effects of bariatric surgery-induced weight loss on knee gait and cartilage degeneration in osteoarthritis (OA) by combining magnetic resonance imaging (MRI), gait analysis, finite element (FE) modeling, and cartilage degeneration algorithm. Gait analyses were performed for obese subjects before and one-year after the bariatric surgery. FE models were created before and after weight loss for those subjects who did not have severe tibio-femoral knee cartilage loss. Knee cartilage degenerations were predicted using an adaptive cartilage degeneration algorithm which is based on cumulative overloading of cartilage, leading to iteratively altered cartilage properties during OA. The average weight loss was 25.7±11.0 kg corresponding to a 9.2±3.9 kg/m2 decrease in body mass index (BMI). External knee rotation moment increased, and minimum knee flexion angle decreased significantly (p < 0.05) after weight loss. Moreover, weight loss decreased maximum cartilage degeneration by 5±23% and 13±11% on the medial and lateral tibial cartilage surfaces, respectively. Average degenerated volumes in the medial and lateral tibial cartilage decreased by 3±31% and 7±32%, respectively, after weight loss. However, increased degeneration levels could also be observed due to altered knee kinetics. The present results suggest that moderate weight loss changes knee kinetics and kinematics and can slow-down cartilage degeneration for certain patients. Simulation results also suggest that prediction of cartilage degeneration is subject-specific and highly depend on the altered gait loading, not just the patients weight.


Journal of the Acoustical Society of America | 2015

Inter-individual changes in cortical bone three-dimensional microstructure and elastic coefficient have opposite effects on radial sound speed

Chibuzor T. M. Eneh; Jukka Liukkonen; Markus K. H. Malo; Jukka S. Jurvelin; Juha Töyräs

Knowledge about simultaneous contributions of tissue microstructure and elastic properties on ultrasound speed in cortical bone is limited. In a previous study, porosities and elastic coefficients of cortical bone in human femurs were shown to change with age. In the present study, influences of inter-individual and site-dependent variation in cortical bone microstructure and elastic properties on radial speed of sound (SOS; at 4, 6, and 8 MHz) were investigated using three-dimensional (3D) finite difference time domain modeling. Models with fixed (nominal model) and sample-specific (sample-specific model) values of radial elastic coefficients were compared. Elastic coefficients and microstructure for samples (n = 24) of human femoral shafts (n = 6) were derived using scanning acoustic microscopy and micro-computed tomography images, respectively. Porosity-related SOS varied more extensively in nominal models than in sample-specific models. Linear correlation between pore separation and SOS was similar (R = 0.8, p < 0.01, for 4 MHz) for both models. The determination coefficient (R(2)= 0.75, p < 0.05) between porosity and radial SOS, especially at 4 MHz, was highest in the posterior quadrant. The determination coefficient was lower for models with sample-specific values of radial elastic coefficient implemented (R(2) < 0.33, p < 0.05), than for nominal models (0.48 < R(2)< 0.63, p < 0.05). This information could be useful in in vivo pulse-echo cortical thickness measurements applying constant SOS.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2011

Effects of non-optimal focusing on dual-frequency ultrasound measurements of bone

Markus K. H. Malo; Janne Karjalainen; Ossi Riekkinen; Hanna Isaksson; Jukka S. Jurvelin; J. Töyräs

In pulse-echo (PE) ultrasound measurements, the use of focused transducers is desirable for quantitative assessment of bone characteristics because of the attenuation in the overlying soft tissues. However, the variable thickness and composition of the soft tissue overlying bone affect the focal depth of the ultrasound beam and induce errors into the measurements. To compensate for the attenuation-related effects caused by the interfering soft tissue (i.e., fat and lean tissue), a dual-frequency ultrasound (DFUS) technique was recently introduced. The aim of this study was to investigate the effect of non-optimal focal depth of the ultrasound beam on the determination of the integrated reflection coefficient (IRC) of bone when overlaid by an interfering layer composed of oil and water. The feasibility of the DFUS-based correction of the IRC was evaluated through numerical simulations and experimental measurements. Even when the interfering layer-bone interface was out of focus, the total thickness of the interfering layer could be accurately determined with the technique. However, based on the simulations, the errors in the determination of the composition of the interfering layer increased (0.004 to 113.8%) with the increase in distance between the interfering layer-bone interface and the focus of the ultrasound beam. Attenuation compensation, based on the true composition of the interfering layer, resulted in an average relative error of 22.3% in the IRC values calculated from the simulations. Interestingly, the attenuation compensation with the interfering layer composition estimated using the DFUS technique resulted in a smaller average relative error of 14.9% in the IRC values. The simulations suggest that DFUS can reduce the errors induced by soft tissue in bone PE ultrasound measurements. The experimental measurements indicate that the accuracy of the IRC measurements is rather similar when using DFUS correction or correction based on the true composition of the interfering layer. However, the results suggest that accurate determination of soft tissue composition may be difficult without optimal focusing of the ultrasound beam on the soft tissue-bone interface.

Collaboration


Dive into the Markus K. H. Malo's collaboration.

Top Co-Authors

Avatar

Jukka S. Jurvelin

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Juha Töyräs

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janne Karjalainen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Jukka Liukkonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chibuzor T. M. Eneh

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Ossi Riekkinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Rami K. Korhonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Satu I. Inkinen

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge