Markus Kuhlmann
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Kuhlmann.
The Plant Cell | 2013
Inna Lermontova; Markus Kuhlmann; Swetlana Friedel; Twan Rutten; Stefan Heckmann; Michael Sandmann; Dmitri Demidov; Veit Schubert; Ingo Schubert
This work finds that Arabidopsis KINETOCHORE NULL2 (KNL2) colocalizes with the centromere histone variant cenH3. Characterization of knl2 mutants showed reduction of cenH3 deposition at centromeres, abnormalities of mitosis and meiosis, seed abortion, and alterations in DNA methylation. The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a KINETOCHORE NULL2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance.
Molecular Genetics and Genomics | 2002
Thorsten Heinekamp; Markus Kuhlmann; A. Lenk; Anne Strathmann; Wolfgang Dröge-Laser
Abstract. Screening of a tobacco (Nicotiana tabacum) cDNA library resulted in the isolation of a clone encoding the bZIP transcription factor BZI-1. With respect to amino acid sequence, conservation of protein domains, genomic exon-intron structure and expression pattern, BZI-1 is closely related to CPRF2, OHP1/2, BLZ1 and REB, a group of bZIP proteins which have been described in a number of dicot and monocot species. BZI-1 exhibits the characteristics of a transcription factor. It binds to G-box and C-box cis-elements in vitro, it is localised in the nucleus, and the N-terminal region of BZI-1 functions as an activation domain in both yeast and plant cells. Since BZI-1-related transcription factors have been isolated from dicots by in vitro binding to G-box elements in the chalcone synthase (CHS) promoter, it has been suggested that phenylpropanoid pathway genes, such as CHS and PAL (phenylalanine ammonia-lyase), are targets of these proteins in vivo. However, after infection with Pseudomonas syringae or Tobacco Mosaic Virus, no changes in pathogen-induced PAL expression were observed in transgenic plants expressing increased levels of BZI-1 or a dominant negative form of the protein, BZI-1-ΔN. In contrast to the tissue-specific expression of CHS and PAL, BZI-1 was found to be ubiquitously expressed in tobacco plants. Furthermore, no changes in the tissue-specific expression of PAL or CHS were observed in plants that were transgenic for BZI-1-ΔN. Expression of a VP16-BZI-1 fusion protein would be expected to result in constitutive activation of the BZI-1 target genes. However, tetracycline-dependent expression of a VP16-BZI-1 protein in tobacco plants did not result in activation of CHS or PAL. On the basis of these data, we conclude that the phenylpropanoid pathway genes analysed are not targets of BZI-1 in vivo. Thus, the pattern of in vitro DNA binding of transcription factors need not always reflect their in vivo function.
PLOS ONE | 2014
Palakolanu Sudhakar Reddy; Polavarapu B. Kavi Kishor; Christiane Seiler; Markus Kuhlmann; Lennart Eschen-Lippold; Justin Lee; Malireddy K. Reddy; Nese Sreenivasulu
The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly conserved.
Plant Molecular Biology | 2012
Markus Kuhlmann; Michael Florian Mette
In plants, RNA-directed DNA methylation (RdDM) and related transcriptional gene silencing (TGS) involve members of the suppressor of variegation 3-9-homologous (SUVH) group of putative histone methyltransferases. Utilizing a reverse genetic approach in Arabidopsis thaliana, we demonstrate that two closely related SUVH members, SUVH2 and SUVH9, act partially non-redundant in RdDM. DNA methylation, transcript accumulation and association with histone modifications were analyzed at the endogenous RdDM target AtSN1 (a SINE-like retroelement) in suvh2 and suvh9 single as well as suvh2suvh9 double mutants. SUVH2 was found to be required for full DNA methylation at AtSN1 in early seed development and was also higher expressed in seeds than at later developmental stages. SUVH9 had its impact on RdDM later during vegetative development of the plant and was also higher expressed during that stage than at earlier developmental stages. The strongest reduction of RdDM at AtSN1 was found in suvh2suvh9 double mutant plants. Histone 3-lysine 9-dimethylation (H3K9me2) associated with AtSN1 was reduced only in the simultaneous absence of functional SUVH2 and SUVH9. Thus, SUVH2 and SUVH9 functions in RdDM and TGS are overlapping in spite of some developmental specialization. Pol V specific transcripts were reduced in suvh2suvh9 plants. This might indicate a role of these SUVH proteins in Pol V complex recruitment.
Proceedings of the National Academy of Sciences of the United States of America | 2015
André Marques; Tiago Ribeiro; Pavel Neumann; Jiří Macas; Petr Novak; Veit Schubert; Marco Pellino; Jörg Fuchs; Wei Ma; Markus Kuhlmann; Ronny Brandt; André Luís Laforga Vanzela; Tomáš Beseda; Hana Šimková; Andrea Pedrosa-Harand; Andreas Houben
Significance Holocentric chromosomes are characterized by kinetochore activity along each sister chromatid. Although the kinetochore structure seems to be well conserved, as in monocentric organisms, the organization of holocentromeres is still elusive, and no centromeric repeat has been found associated with centromeric histone H3 variant-positive centromeric nucleosomes for any holocentric organism studied hitherto. We demonstrate that holocentrics of the sedge (Cyperaceae) Rhynchospora pubera possess different classes of centromere-specific repeats. Holocentromeres are composed of multiple centromeric units interspersing the gene-containing chromatin, and, as a functional adaption, a cell-cycle–dependent shuffling of centromeric units results in the formation of functional (poly)centromeres during cell division. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromere organization. Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated “Tyba” and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle–dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences.
PLOS ONE | 2014
Vokkaliga T. Harshavardhan; Le Van Son; Christiane Seiler; Astrid Junker; Kathleen Weigelt-Fischer; Christian Klukas; Thomas Altmann; Nese Sreenivasulu; Helmut Bäumlein; Markus Kuhlmann
Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plants moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response.
Epigenetics | 2012
Andreas Finke; Markus Kuhlmann; Michael Florian Mette
In plants, a particular class of short interfering (si)RNAs can serve as a signal to induce cytosine methylation at homologous genomic regions. If the targeted DNA has promoter function, this RNA-directed DNA methylation (RdDM) can result in transcriptional gene silencing (TGS). RNA-directed transcriptional gene silencing (RdTGS) of transgenes provides a versatile system for the study of epigenetic gene regulation. We used transcription of a nopaline synthase promoter (ProNOS)-inverted repeat (IR) to provide a RNA signal that triggers de novo cytosine methylation and TGS of a homologous ProNOS copy in trans. Utilizing a ProNOS-NPTII reporter gene showing high sensitivity to silencing in this two component system, a forward genetic screen for EMS-induced no rna-directed transcriptional silencing (nrd) mutations was performed in Arabidopsis thaliana. Three nrd mutant lines were found to contain one novel loss-of-function allele of idn2/rdm12 and two of nrpd2a/nrpe2a. IDN2/RDM12 encodes a XH/XS domain protein that is able to bind double-stranded RNA with 5′ overhangs, while NRPD2a/NRPE2a encodes the common second-largest subunit of the plant specific DNA-dependent RNA polymerases IV and V involved in silencing processes. Both idn2/rdm12 and nrpd2a/nrpe2a release target transgene expression and reduce CHH context methylation at transgenic as well as endogenous RdDM target regions to similar extents. Nevertheless, accumulation of IR-derived siRNA is not affected, allowing us to present a refined model for the pathway of RdDM and RdTGS that positions function of IDN2 downstream of siRNA formation and points to an important role for its XH domain.
Nucleic Acids Research | 2006
Blagovesta Popova; Markus Kuhlmann; Andrea Hinas; Fredrik Söderbom; Wolfgang Nellen
We have identified a putative RNA helicase from Dictyostelium that is closely related to drh-1, the ‘dicer-related-helicase’ from Caenorhabditis elegans and that also has significant similarity to proteins from vertebrates and plants. Green fluorescent protein (GFP)-tagged HelF protein was localized in speckles in the nucleus. Disruption of the helF gene resulted in a mutant morphology in late development. When transformed with RNAi constructs, HelF− cells displayed enhanced RNA interference on four tested genes. One gene that could not be knocked-down in the wild-type background was efficiently silenced in the mutant. Furthermore, the efficiency of silencing in the wild-type was dramatically improved when helF was disrupted in a secondary transformation. Silencing efficiency depended on transcription levels of hairpin RNA and the threshold was dramatically reduced in HelF− cells. However, the amount of siRNA did not depend on hairpin transcription. HelF is thus a natural nuclear suppressor of RNA interference. In contrast, no improvement of gene silencing was observed when mutant cells were challenged with corresponding antisense constructs. This indicates that RNAi and antisense have distinct requirements even though they may share parts of their pathways.
Methods of Molecular Biology | 2006
Markus Kuhlmann; Blagovesta Popova; Wolfgang Nellen
Knockouts by homologous recombination are frequently used to investigate the function of genes in Dictyostelium and other organisms. Antisense-mediated gene silencing and RNA interference (RNAi) are convenient alternatives to reduce gene expression to different levels and to silence multigene families. We describe here the methods for efficient RNA interference in Dictyostelium and some useful mutant strains that enhance the success rate or may serve as convenient controls. We believe that it is helpful to also discuss failed attempts to optimize and expand the system because these are rarely discussed in the literature. In addition, a list of in silico and experimentally identified components in the RNAi and antisense pathway is presented.
The Plant Cell | 2017
Michael Sandmann; Paul B. Talbert; Dmitri Demidov; Markus Kuhlmann; Twan Rutten; Udo Conrad; Inna Lermontova
AtKNL2 possesses a conserved CENPC-k motif that is required for its centromeric localization and enables sequence-independent interaction with DNA in vitro but preferential binding with the centromeric repeat pAL1 in vivo. KINETOCHORE NULL2 (KNL2) is involved in recognition of centromeres and in centromeric localization of the centromere-specific histone cenH3. Our study revealed a cenH3 nucleosome binding CENPC-k motif at the C terminus of Arabidopsis thaliana KNL2, which is conserved among a wide spectrum of eukaryotes. Centromeric localization of KNL2 is abolished by deletion of the CENPC-k motif and by mutating single conserved amino acids, but can be restored by insertion of the corresponding motif of Arabidopsis CENP-C. We showed by electrophoretic mobility shift assay that the C terminus of KNL2 binds DNA sequence-independently and interacts with the centromeric transcripts in vitro. Chromatin immunoprecipitation with anti-KNL2 antibodies indicated that in vivo KNL2 is preferentially associated with the centromeric repeat pAL1. Complete deletion of the CENPC-k motif did not influence its ability to interact with DNA in vitro. Therefore, we suggest that KNL2 recognizes centromeric nucleosomes, similar to CENP-C, via the CENPC-k motif and binds adjoining DNA.