Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Lange is active.

Publication


Featured researches published by Markus Lange.


Nature | 2010

Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment

Christoph Scherber; Nico Eisenhauer; Wolfgang W. Weisser; Bernhard Schmid; Winfried Voigt; Markus Fischer; Ernst-Detlef Schulze; Christiane Roscher; Alexandra Weigelt; Eric Allan; Holger Beßler; Michael Bonkowski; N. C. Buchmann; François Buscot; Lars W. Clement; Anne Ebeling; Christof Engels; Stefan Halle; Ilona Kertscher; Alexandra-Maria Klein; Robert Koller; Stephan König; Esther Kowalski; Volker Kummer; Annely Kuu; Markus Lange; Dirk Lauterbach; Cornelius Middelhoff; Varvara D. Migunova; Alexandru Milcu

Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.


Nature Communications | 2015

Plant diversity increases soil microbial activity and soil carbon storage

Markus Lange; Nico Eisenhauer; Carlos A. Sierra; Holger Bessler; Christoph Engels; Robert I. Griffiths; Perla Griselle Mellado-Vázquez; Ashish Malik; Jacques Roy; Stefan Scheu; Sibylle Steinbeiss; Bruce C. Thomson; Susan E. Trumbore; Gerd Gleixner

Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon.


Nature | 2016

Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality

Santiago Soliveres; Fons van der Plas; Peter Manning; Daniel Prati; Martin M. Gossner; Swen C. Renner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for ‘regulating’ and ‘cultural’ services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Interannual variation in land-use intensity enhances grassland multidiversity

Eric Allan; Oliver Bossdorf; Carsten F. Dormann; Daniel Prati; Martin M. Gossner; Teja Tscharntke; Nico Blüthgen; Michaela Bellach; Klaus Birkhofer; Steffen Boch; Stefan Böhm; Carmen Börschig; Antonis Chatzinotas; Sabina Christ; Rolf Daniel; Tim Diekötter; Christiane Fischer; Thomas Friedl; Karin Glaser; Christine Hallmann; Ladislav Hodač; Norbert Hölzel; Kirsten Jung; Alexandra-Maria Klein; Valentin H. Klaus; Till Kleinebecker; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller

Significance Land-use intensification is a major threat to biodiversity. So far, however, studies on biodiversity impacts of land-use intensity (LUI) have been limited to a single or few groups of organisms and have not considered temporal variation in LUI. Therefore, we examined total ecosystem biodiversity in grasslands varying in LUI with a newly developed index called multidiversity, which integrates the species richness of 49 different organism groups ranging from bacteria to birds. Multidiversity declined strongly with increasing LUI, but changing LUI across years increased multidiversity, particularly of rarer species. We conclude that encouraging farmers to change the intensity of their land use over time could be an important strategy to maintain high biodiversity in grasslands. Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.


PLOS ONE | 2014

Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland

Markus Lange; Maike Habekost; Nico Eisenhauer; Christiane Roscher; Holger Bessler; Christof Engels; Yvonne Oelmann; Stefan Scheu; Wolfgang Wilcke; Ernst-Detlef Schulze; Gerd Gleixner

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.


Nature | 2016

Land-use intensification causes multitrophic homogenization of grassland communities.

Martin M. Gossner; Thomas M. Lewinsohn; Tiemo Kahl; Fabrice Grassein; Steffen Boch; Daniel Prati; Klaus Birkhofer; Swen C. Renner; Johannes Sikorski; Tesfaye Wubet; Hartmut Arndt; Vanessa Baumgartner; Stefan Blaser; Nico Blüthgen; Carmen Börschig; François Buscot; Tim Diekötter; Leonardo R. Jorge; Kirsten Jung; Alexander C. Keyel; Alexandra-Maria Klein; Sandra Klemmer; Jochen Krauss; Markus Lange; Jörg Müller; Jörg Overmann; Esther Pašalić; Caterina Penone; David J. Perović; Oliver Purschke

Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.


Philosophical Transactions of the Royal Society B | 2016

Locally rare species influence grassland ecosystem multifunctionality

Santiago Soliveres; Peter Manning; Daniel Prati; Martin M. Gossner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Alexandra-Maria Klein; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann; Esther Pašalić

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


Ecology | 2015

Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa

Peter Manning; Martin M. Gossner; Oliver Bossdorf; Eric Allan; Yuanye Zhang; Daniel Prati; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Alexandra-Maria Klein; Till Kleinebecker; Jochen Krauss; Markus Lange; Jörg Müller; Esther Pašalić; Stephanie A. Socher; Marco Tschapka; Manfred Türke; Christiane N. Weiner; Michael Werner; Sonja Gockel; Andreas Hemp; Swen C. Renner; Konstans Wells; François Buscot; Elisabeth K. V. Kalko

Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations (35% decrease in r and 43% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hy...


PLOS ONE | 2014

Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods

Anne Ebeling; Sebastian T. Meyer; Maike Abbas; Nico Eisenhauer; Helmut Hillebrand; Markus Lange; Christoph Scherber; Anja Vogel; Alexandra Weigelt; Wolfgang W. Weisser

Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.


The American Naturalist | 2012

Are Gastropods, Rather than Ants, Important Dispersers of Seeds of Myrmecochorous Forest Herbs?

Manfred Türke; Kerstin Andreas; Martin M. Gossner; Esther Kowalski; Markus Lange; Steffen Boch; Stephanie A. Socher; Jörg Müller; Daniel Prati; Markus Fischer; Rainer Meyhöfer; Wolfgang W. Weisser

Seed dispersal by ants (myrmecochory) is widespread, and seed adaptations to myrmecochory are common, especially in the form of fatty appendices (elaiosomes). In a recent study, slugs were identified as seed dispersers of myrmecochores in a central European beech forest. Here we used 105 beech forest sites to test whether myrmecochore presence and abundance is related to ant or gastropod abundance and whether experimentally exposed seeds are removed by gastropods. Myrmecochorous plant cover was positively related to gastropod abundance but was negatively related to ant abundance. Gastropods were responsible for most seed removal and elaiosome damage, whereas insects (and rodents) played minor roles. These gastropod effects on seeds were independent of region or forest management. We suggest that terrestrial gastropods can generally act as seed dispersers of myrmecochorous plants and even substitute myrmecochory, especially where ants are absent or uncommon.

Collaboration


Dive into the Markus Lange's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Müller

Bavarian Forest National Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge