Markus Langhans
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Langhans.
The Plant Cell | 2010
Corrado Viotti; Julia Bubeck; York-Dieter Stierhof; Melanie Krebs; Markus Langhans; Willy A. M. van den Berg; Walter Van Dongen; Sandra Richter; Niko Geldner; Junpei Takano; Gerd Jürgens; Sacco C. de Vries; David G. Robinson; Karin Schumacher
This study examines secretory and endocytotic trafficking in Arabidopsis by tracking the movement of a brassinosteroid receptor and a boron exporter through the endomembrane system. Both endocytotic and secretory cargo travel through the trans-Golgi network/early endosome (TGN/EE), and the TGN/EE is shown to be an independent organelle that only transiently associates with the Golgi. Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.
Planta | 2003
Roni Aloni; Katja Schwalm; Markus Langhans; Cornelia I. Ullrich
Abstract. The major regulatory shoot signal is auxin, whose synthesis in young leaves has been a mystery. To test the leaf-venation hypothesis [R. Aloni (2001) J Plant Growth Regul 20: 22–34], the patterns of free-auxin production, movement and accumulation in developing leaf primordia of DR5::GUS-transformed Arabidopsis thaliana (L.) Heynh. were visualized. DR5::GUS expression was regarded to reflect sites of free auxin, while immunolocalization with specific monoclonal antibodies indicated total auxin distribution. The mRNA expression of key enzymes involved in the synthesis, conjugate hydrolysis, accumulation and basipetal transport of auxin, namely indole-3-glycerol-phosphate-synthase, nitrilase, IAA-amino acid hydrolase, chalcone synthase and PIN1 as an essential component of the basipetal IAA carrier, was investigated by reverse transcription–polymerase chain reaction. Near the shoot apex, stipules were the earliest sites of high free-auxin production. During early stages of primordium development, leaf apical dominance was evident from strong β-glucuronidase activity in the elongating tip, possibly suppressing the production of free auxin in the leaf tissues below it. Hydathodes, which develop in the tip and later in the lobes, were apparently primary sites of high free-auxin production, the latter supported by auxin-conjugate hydrolysis, auxin retention by the chalcone synthase-dependent action of flavonoids and also by the PIN1-component of the carrier-mediated basipetal transport. Trichomes and mesophyll cells were secondary sites of free-auxin production. During primordium development there are gradual shifts in sites and concentrations of free-auxin production occurring first in the tip of a leaf primordium, then progressing basipetally along the margins, and finally appearing also in the central regions of the lamina. This developmental pattern of free-auxin production is suggested to control the basipetal maturation sequence of leaf development and vascular differentiation in Arabidopsis leaves. Electronic Supplementary Material is available if you access this article at http://dx.doi.org/10.1007/s00425-002-0937-8. On that page (frame on the left side), a link takes you directly to the supplementary material.
Planta | 2006
Roni Aloni; Erez Aloni; Markus Langhans; Cornelia I. Ullrich
To elucidate the role of auxin in flower morphogenesis, its distribution patterns were studied during flower development in Arabidopsis thaliana (L.) Heynh. Expression of DR5::GUS was regarded to reflect sites of free auxin, while immunolocalization with auxin polyclonal antibodies visualized conjugated auxin distribution. The youngest flower bud was loaded with conjugated auxin. During development, the apparent concentration of free auxin increased in gradual patterns starting at the floral-organ tip. Anthers are major sites of high concentrations of free auxin that retard the development of neighboring floral organs in both the acropetal and basipetal directions. The IAA-producing anthers synchronize flower development by retarding petal development and nectary gland activity almost up to anthesis. Tapetum cells of young anthers contain free IAA which accumulates in pollen grains, suggesting that auxin promotes pollen-tube growth towards the ovules. High amounts of free auxin in the stigma induce a wide xylem fan immediately beneath it. After fertilization, the developing embryos and seeds show elevated concentrations of auxin, which establish their axial polarity. This developmental pattern of auxin production during floral-bud development suggests that young organs which produce high concentrations of free IAA inhibit or retard organ-primordium initiation and development at the shoot tip.
Plant Journal | 2010
Silke Niemes; Markus Langhans; Corrado Viotti; David Scheuring; Melody San Wan Yan; Liwen Jiang; Stefan Hillmer; David G. Robinson; Peter Pimpl
Receptor-mediated sorting processes in the secretory pathway of eukaryotic cells rely on mechanisms to recycle the receptors after completion of transport. Based on this principle, plant vacuolar sorting receptors (VSRs) are thought to recycle after dissociating of receptor-ligand complexes in a pre-vacuolar compartment. This recycling is mediated by retromer, a cytosolic coat complex that comprises sorting nexins and a large heterotrimeric subunit. To analyse retromer-mediated VSR recycling, we have used a combination of immunoelectron and fluorescence microscopy to localize the retromer components sorting nexin 1 (SNX1) and sorting nexin 2a (SNX2a) and the vacuolar sorting protein VPS29p. All retromer components localize to the trans-Golgi network (TGN), which is considered to represent the early endosome of plants. In addition, we show that inhibition of retromer function in vivo by expression of SNX1 or SNX2a mutants as well as transient RNAi knockdown of all sorting nexins led to accumulation of the VSR BP80 at the TGN. Quantitative protein transport studies and live-cell imaging using fluorescent vacuolar cargo molecules revealed that arrival of these VSR ligands at the vacuole is not affected under these conditions. Based on these findings, we propose that the TGN is the location of retromer-mediated recycling of VSRs, and that transport towards the lytic vacuole downstream of the TGN is receptor-independent and occurs via maturation, similar to transition of the early endosome into the late endosome in mammalian cells.
Trends in Plant Science | 2008
David G. Robinson; Markus Langhans; Claude Saint-Jore-Dupas; Chris Hawes
Brefeldin A (BFA) is one of the most popular drugs used by researchers for studies on secretion and endocytosis because it interferes with specific vesicle coat proteins via action on a guanine nucleotide exchange factor. Due to its range of morphological effects on the Golgi apparatus in a variety of plant tissues, we believe that there is more to the BFA response than the primary molecular targets so far identified.
Plant Journal | 2010
Silke Niemes; Mathias Labs; David Scheuring; Falco Krueger; Markus Langhans; Barbara Jesenofsky; David G. Robinson; Peter Pimpl
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor-ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer-mediated recycling of the plant VSR BP80 starts at the trans-Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co-expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII-mediated transport route. Retention of soluble cargo despite ongoing COPII-mediated bulk flow can only be explained by an interaction with membrane-bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER-anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR-ligand interaction. It also implies that the retromer-mediated recycling route for the VSRs leads from the TGN back to the ER.
Planta | 2001
Markus Langhans; Rafael Ratajczak; Martin Lützelschwab; Wolfgang Michalke; Rebecca Wächter; Elke Fischer-Schliebs; Cornelia I. Ullrich
Abstract. Plasma-membrane-located primary pumps were investigated in the sieve element (SE)-companion cell complex in the transport phloem of 2-week-old stems of Ricinus communis L. and, for comparison, in stems of Cucurbita pepo L. and in the secondary phloem of Agrobacterium tumefaciens-induced crown galls as a typical sink tissue. The plasma-membrane (PM) H+-ATPase and the tonoplast-type pyrophosphatase (PPase) were immunolocalized by epifluorescence and confocal laser scanning microscopy (CLSM) upon single or double labeling with specific monoclonal and polyclonal antibodies. Quantitative fluorescence evaluation by CLSM revealed both pumps in one membrane, the sieve-element PM. Different PM H+-ATPase antibody clones, raised against the PM H+-ATPase of Zea mays coleoptiles, induced in mouse and produced in mouse hybridoma cells, discriminated between different phloem cell types. Clones 30D5C4 and 44B8A1 labeled sieve elements and clone 46E5B11D5 labeled companion cells, indicating the existence of different phloem PM H+-ATPase isoforms. The results are discussed in terms of energization of SE transporters for retrieval of leaking sucrose, K+ and amino acids, as one of the unknown roles of ATP found in SEs. The function of the PPase could be related to phloem sucrose metabolism in support of ATP-requiring processes.
Traffic | 2008
Julia Bubeck; David Scheuring; Eric Hummel; Markus Langhans; Corrado Viotti; Ombretta Foresti; Juergen Denecke; David K. Banfield; David G. Robinson
Overexpression of the Golgi and endoplasmic reticulum (ER) syntaxins SYP31 and SYP81 strongly inhibits constitutive secretion. By comparing the secreted reporter α‐amylase with the ER‐retained reporter α‐amylase‐HDEL, it was concluded that SYP81 overexpression inhibits both retrograde and anterograde transport, while SYP31 overexpression mainly affected anterograde transport. Of the other interacting SNAREs investigated, only the overexpression of MEMB11 led to an inhibition of protein secretion. Although the position of a fluorescent tag does not influence the correct localization of the fusion protein, only N‐terminal‐tagged SYP31 retained the ability of the untagged SNARE to inhibit transport. C‐terminal‐tagged SYP31 failed to exhibit this effect. Overexpression of both wild‐type and N‐terminal‐tagged syntaxins caused standard Golgi marker proteins to redistribute into the ER. Nevertheless, green fluorescent protein (GFP)–SYP31 was still visible as fluorescent punctae, which, unlike SYP31–GFP, were resistant to brefeldin A treatment. Immunogold electron microscopy showed that endogenous SYP81 is not only present at the ER but also in the cis Golgi, indicating that this syntaxin cycles between these two organelles. However, when expressed at non‐inhibitory levels, YFP–SYP81 was seen to locate principally to subdomains of the ER. These punctate structures were physically separated from the Golgi, suggesting that they might possibly reflect the position of ER import sites.
Plant Physiology | 2003
Rebecca Wächter; Markus Langhans; Roni Aloni; Simone Götz; Anke Weilmünster; Ariane Koops; Leopoldine Temguia; Igor Mistrík; Ján Pavlovkin; Uwe Rascher; Katja Schwalm; Karen E. Koch; Cornelia I. Ullrich
Vascular differentiation and epidermal disruption are associated with establishment of tumors induced by Agrobacterium tumefaciens. Here, we address the relationship of these processes to the redirection of nutrient-bearing water flow and carbohydrate delivery for tumor growth within the castor bean (Ricinus communis) host. Treatment with aminoethoxyvinyl-glycine showed that vascular differentiation and epidermal disruption were central to ethylene-dependent tumor establishment. CO2 release paralleled tumor growth, but water flow increased dramatically during the first 3 weeks. However, tumor water loss contributed little to water flow to host shoots. Tumor water loss was followed by accumulation of the osmoprotectants, sucrose (Suc) and proline, in the tumor periphery, shifting hexose-to-Suc balance in favor of sugar signals for maturation and desiccation tolerance. Concurrent activities and sites of action for enzymes of Suc metabolism changed: Vacuolar invertase predominated during initial import of Suc into the symplastic continuum, corresponding to hexose concentrations in expanding tumors. Later, Suc synthase (SuSy) and cell wall invertase rose in the tumor periphery to modulate both Suc accumulation and descending turgor for import by metabolization. Sites of abscisic acid immunolocalization correlated with both central vacuolar invertase and peripheral cell wall invertase. Vascular roles were indicated by SuSy immunolocalization in xylem parenchyma for inorganic nutrient uptake and in phloem, where resolution allowed SuSy identification in sieve elements and companion cells, which has widespread implications for SuSy function in transport. Together, data indicate key roles for ethylene-dependent vascularization and cuticular disruption in the redirection of water flow and carbohydrate transport for successful tumor establishment.
Traffic | 2008
Markus Langhans; María Jesús Marcote; Peter Pimpl; Goretti Virgili-López; David G. Robinson; Fernando Aniento
p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C‐terminus both a dilysine motif in the −3, −4 position and a diaromatic motif in the −7, −8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 protein (Atp24) and have investigated the contribution of the sorting motifs in its cytosolic tail to its in vivo localization. Atp24‐red fluorescent protein localizes exclusively to the endoplasmic reticulum (ER), in contrast with the localization of p24 proteins in other eukaryotes, and the dilysine motif is necessary and sufficient for ER localization. In contrast, Atp24 mutants lacking the dilysine motif are transported along the secretory pathway to the prevacuolar compartment and the vacuole, although a significant fraction is also found at the plasma membrane. Finally, we have found that ER export of Atp24 is COPII dependent, while its ER localization requires COPI function, presumably for efficient Golgi to ER recycling.