Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Münzenberg is active.

Publication


Featured researches published by Markus Münzenberg.


Physics Reports | 2011

The building blocks of magnonics

Benjamin Lenk; Henning Ulrichs; Fabian Garbs; Markus Münzenberg

Abstract Novel material properties can be realized by designing waves’ dispersion relations in artificial crystals. The crystal’s structural length scales may range from nano- (light) up to centimeters (sound waves). Because of their emergent properties these materials are called metamaterials. Different to photonics, where the dielectric constant dominantly determines the index of refraction, in a ferromagnet the spin-wave index of refraction can be dramatically changed already by the magnetization direction. This allows a different flexibility in realizing dynamic wave guides or spin-wave switches. The present review will give an introduction into the novel functionalities of spin-wave devices, concepts for spin-wave based computing and magnonic crystals. The parameters of the magnetic metamaterials are adjusted to the spin-wave k -vector such that the magnonic band structure is designed. However, already the elementary building block of an antidot lattice, the singular hole, owns a strongly varying internal potential determined by its magnetic dipole field and a localization of spin-wave modes. Photo-magnonics reveal a way to investigate the control over the interplay between localization and delocalization of the spin-wave modes using femtosecond lasers, which is a major focus of this review. We will discuss the crucial parameters to realize free Bloch states and how, by contrast, a controlled localization might allow us to gradually turn on and manipulate spin-wave interactions in spin-wave based devices in the future.


Nature Materials | 2009

Spin polarization in half-metals probed by femtosecond spin excitation

Georg M. Müller; Jakob Walowski; Marija Djordjevic; Gou-Xing Miao; Arunava Gupta; Ana V. Ramos; Kai Gehrke; V. Moshnyaga; K. Samwer; Jan-Michael Schmalhorst; Andy Thomas; Andreas Hütten; Günter Reiss; Jagadeesh S. Moodera; Markus Münzenberg

Knowledge of the spin polarization is of fundamental importance for the use of a material in spintronics applications. Here, we used femtosecond optical excitation of half-metals to distinguish between half-metallic and metallic properties. Because the direct energy transfer by Elliot-Yafet scattering is blocked in a half-metal, the demagnetization time is a measure for the degree of half-metallicity. We propose that this characteristic enables us vice versa to establish a novel and fast characterization tool for this highly important material class used in spin-electronic devices. The technique has been applied to a variety of materials where the spin polarization at the Fermi level ranges from 45 to 98%: Ni, Co(2)MnSi, Fe(3)O(4), La(0.66)Sr(0.33)MnO(3) and CrO(2).


Nature Nanotechnology | 2013

Terahertz spin current pulses controlled by magnetic heterostructures

Tobias Kampfrath; Marco Battiato; Pablo Maldonado; Gerrit Eilers; Jan Nötzold; Sebastian Mährlein; Vladyslav Zbarsky; Frank Freimuth; Yuriy Mokrousov; Stefan Blügel; Martin Wolf; I. Radu; Peter M. Oppeneer; Markus Münzenberg

1. Department of Physical Chemistry, Fritz Haber Institute, Berlin, Germany. 2. Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden. 3. I. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany. 4. Helmholtz-Zentrum Berlin fϋr Materialien und Energie, Berlin, Germany. 5. Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich, Germany.In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.


Reports on Progress in Physics | 2011

Tunneling path toward spintronics

Guo-Xing Miao; Markus Münzenberg; Jagadeesh S. Moodera

The phenomenon of quantum tunneling, which was discovered almost a century ago, has led to many subsequent discoveries. One such discovery, spin polarized tunneling, was made 40 years ago by Robert Meservey and Paul Tedrow (Tedrow and Meservey 1971 Phys. Rev. Lett. 26 192), and it has resulted in many fundamental observations and opened up an entirely new field of study. Until the mid-1990s, this field developed at a steady, low rate, after which a huge increase in activity suddenly occurred as a result of the unraveling of successful spin tunneling between two ferromagnets. In the past 15 years, several thousands of papers related to spin polarized tunneling and transport have been published, making this topic one of the hottest areas in condensed matter physics from both fundamental science and applications viewpoints. Many review papers and book chapters have been written in the past decade on this subject. This paper is not exhaustive by any means; rather, the emphases are on recent progress, technological developments and informing the reader about the current direction in which this topic is moving.


Journal of Physics D | 2008

Intrinsic and non-local Gilbert damping in polycrystalline nickel studied by Ti : sapphire laser fs spectroscopy

Jakob Walowski; M. Djordjevic Kaufmann; Benjamin Lenk; Christine Hamann; Jeffrey McCord; Markus Münzenberg

The use of femtosecond laser pulses generated by a Ti : sapphire laser system allows us to gain an insight into the magnetization dynamics on time scales from sub-picosecond up to 1 ns directly in the time domain. This experimental technique is used to excite a polycrystalline nickel (Ni) film optically and probe the dynamics afterwards. Different spin-wave modes (the Kittel mode, perpendicular standing spin-wave modes and dipolar spin-wave modes (Damon–Eshbach modes)) are identified as the Ni thickness is increased. The Kittel mode allows determination of the Gilbert damping parameter α extracted from the magnetization relaxation time τα. The non-local damping by spin currents emitted into a non-magnetic metallic layer of vanadium (V), palladium (Pd) and the rare earth dysprosium (Dy) are studied for wedge-shaped Ni films of 1–30 nm. The damping parameter increases from α = 0.045 intrinsic for nickel to α > 0.10 for the heavy materials, such as Pd and Dy, for the thinnest Ni films below 10 nm thickness. Also, for the thinnest reference Ni film thickness, an increased magnetic damping below 4 nm is observed. The origin of this increase is discussed within the framework of line broadening by locally different precessional frequencies within the laser spot region.


Nature Photonics | 2016

Efficient metallic spintronic emitters of ultrabroadband terahertz radiation

Tom Seifert; S. Jaiswal; Ulrike Martens; J. Hannegan; Lukas Braun; Pablo Maldonado; Frank Freimuth; Alexander Kronenberg; J. Henrizi; I. Radu; E. Beaurepaire; Yuriy Mokrousov; Peter M. Oppeneer; Martin Jourdan; G. Jakob; Dmitry Turchinovich; L. M. Hayden; Martin Wolf; Markus Münzenberg; Mathias Kläui; Tobias Kampfrath

Ultrashort pulses covering the 1–30 THz range are generated from a W/CoFeB/Pt trilayer and originate from photoinduced spin currents, the inverse spin Hall effect and a broadband Fabry–Perot resonance. The resultant peak fields are several 100 kV cm–1.


Applied Physics Letters | 2010

Magnonic spin-wave modes in CoFeB antidot lattices

Henning Ulrichs; Benjamin Lenk; Markus Münzenberg

In this paper time-resolved magneto-optical Kerr effect experiments on structured CoFeB films are presented. The geometries considered are two dimensional square lattices of micrometer-sized antidots, fabricated by a focused ion beam. The spin-wave spectra of these magnonic crystals show a precessional mode, which can be related to a Bloch state at the zone boundary. Additionally, another magnetic mode of different nature appears, whose frequency displays no dependence on the externally applied magnetic field. These findings are interpreted as delocalized and localized modes, respectively.


Applied Physics Letters | 2008

Epitaxial growth of MgO and Fe∕MgO∕Fe magnetic tunnel junctions on (100)-Si by molecular beam epitaxy

Guo-Xing Miao; Joonyeon Chang; M. J. van Veenhuizen; K. Thiel; M. Seibt; Gerrit Eilers; Markus Münzenberg; Jagadeesh S. Moodera

Epitaxial growth of MgO barrier on Si is of technological importance due to the symmetry filtering effect of the MgO barrier in conjunction with bcc-ferromagnets. We study the epitaxial growth of MgO on (100)-Si by molecular beam epitaxy. MgO matches Si with 4:3 cell ratio, which renders Fe to be 45° rotated relative to Si, in sharp contrast to the direct epitaxial growth of Fe on Si. The compressive strains from Si lead to the formation of small angle grain boundaries in MgO below 5nm, and also affect the transport characteristics of Fe∕MgO∕Fe magnetic tunnel junctions formed on top.


Scientific Reports | 2015

Resolving the role of femtosecond heated electrons in ultrafast spin dynamics

J. Mendil; Pablo Nieves; O. Chubykalo-Fesenko; Jakob Walowski; T. Santos; Simone Pisana; Markus Münzenberg

Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal.Speed limit of FePt spin dynamics on femtosecond timescales J. Mendil, P. C. Nieves, O. Chubykalo-Fesenko, J. Walowski, M. Münzenberg, a) T. Santos, and S. Pisana I. Physikalisches Institut, Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain San Jose Research Center, HGST, a Western Digital Company, 3403 Yerba Buena Rd., San Jose, California 95135, USA


Journal of Applied Physics | 2016

Perspective: Ultrafast magnetism and THz spintronics

Jakob Walowski; Markus Münzenberg

This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time this milestone work by Bigot and coworkers gave insight in a very direct way into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than giving an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first real applications are on their way: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first real applications of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

Collaboration


Dive into the Markus Münzenberg's collaboration.

Top Co-Authors

Avatar

Jakob Walowski

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Felsch

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Ulrike Martens

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Seibt

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerrit Eilers

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jagadeesh S. Moodera

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge