Markus Muttenthaler
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Muttenthaler.
Chemical Reviews | 2014
Kalyana B. Akondi; Markus Muttenthaler; Sébastien Dutertre; Quentin Kaas; David J. Craik; Richard J. Lewis; Paul F. Alewood
Peptide therapeutics are acclaimed as a promising addition to the pharmaceutical arena, and they continue to attract interest due to their high potency, bioavailability, and fewer concerns with toxicity, drug to drug cross-reactions, and tissue accumulation. Around 700 species of marine snails of the genus Conus are distributed throughout tropical and subtropical waters. As different species preferentially hunt fish, worms, or molluscs they are categorized as piscivorous, vermivorous, or molluscivorous, respectively, although some cone snail species can feed on more than one prey type. These slow-moving creatures evolved into predators through incorporation of a specialized envenomation apparatus that enables them to quickly subdue their fast-moving prey. Conotoxins target a wide range of receptors and ion channels with unparalleled potency and selectivity. They have consequently become the subject of intense research in light of their immense diagnostic and therapeutic potential and are the focus of this review.
Journal of the American Chemical Society | 2010
Markus Muttenthaler; Simon T. Nevin; Anton A. Grishin; Shyuan T. Ngo; P. T. Choy; Norelle L. Daly; Shu-Hong Hu; Christopher J. Armishaw; C-I Anderson Wang; Richard J. Lewis; Jennifer L. Martin; Peter G. Noakes; David J. Craik; David J. Adams; Paul F. Alewood
Alpha-conotoxins are tightly folded miniproteins that antagonize nicotinic acetylcholine receptors (nAChR) with high specificity for diverse subtypes. Here we report the use of selenocysteine in a supported phase method to direct native folding and produce alpha-conotoxins efficiently with improved biophysical properties. By replacing complementary cysteine pairs with selenocysteine pairs on an amphiphilic resin, we were able to chemically direct all five structural subclasses of alpha-conotoxins exclusively into their native folds. X-ray analysis at 1.4 A resolution of alpha-selenoconotoxin PnIA confirmed the isosteric character of the diselenide bond and the integrity of the alpha-conotoxin fold. The alpha-selenoconotoxins exhibited similar or improved potency at rat diaphragm muscle and alpha3beta4, alpha7, and alpha1beta1 deltagamma nAChRs expressed in Xenopus oocytes plus improved disulfide bond scrambling stability in plasma. Together, these results underpin the development of more stable and potent nicotinic antagonists suitable for new drug therapies, and highlight the application of selenocysteine technology more broadly to disulfide-bonded peptides and proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Johannes Koehbach; Margaret O'Brien; Markus Muttenthaler; Marion Miazzo; Muharrem Akcan; Alysha G. Elliott; Norelle L. Daly; Peta J. Harvey; Sarah Arrowsmith; Sunithi Gunasekera; Terry J. Smith; Susan Wray; Ulf Göransson; Philip E. Dawson; David J. Craik; Michael Freissmuth; Christian W. Gruber
Significance G protein-coupled receptors (GPCRs) are promising drug targets: >30% of the currently marketed drugs elicit their actions by binding to these transmembrane receptors. However, only ∼10% of all GPCRs are targeted by approved drugs. Resorting to plant-derived compounds catalogued by ethnopharmacological analyses may increase this repertoire. We provide a proof of concept by analyzing the uterotonic action of an herbal remedy used in traditional African medicine. We identified cyclic peptides, investigated the molecular mechanisms underlying their uterotonic activity, and report an oxytocic plant peptide that modulates the human oxytocin/vasopressin receptors. This naturally occurring peptide served as a template for the design of an oxytocin-like nonapeptide with enhanced receptor selectivity, highlighting the potential of cyclotides for the discovery of peptide-based GPCR ligands. Cyclotides are plant peptides comprising a circular backbone and three conserved disulfide bonds that confer them with exceptional stability. They were originally discovered in Oldenlandia affinis based on their use in traditional African medicine to accelerate labor. Recently, cyclotides have been identified in numerous plant species of the coffee, violet, cucurbit, pea, potato, and grass families. Their unique structural topology, high stability, and tolerance to sequence variation make them promising templates for the development of peptide-based pharmaceuticals. However, the mechanisms underlying their biological activities remain largely unknown; specifically, a receptor for a native cyclotide has not been reported hitherto. Using bioactivity-guided fractionation of an herbal peptide extract known to indigenous healers as “kalata-kalata,” the cyclotide kalata B7 was found to induce strong contractility on human uterine smooth muscle cells. Radioligand displacement and second messenger-based reporter assays confirmed the oxytocin and vasopressin V1a receptors, members of the G protein-coupled receptor family, as molecular targets for this cyclotide. Furthermore, we show that cyclotides can serve as templates for the design of selective G protein-coupled receptor ligands by generating an oxytocin-like peptide with nanomolar affinity. This nonapeptide elicited dose-dependent contractions on human myometrium. These observations provide a proof of concept for the development of cyclotide-based peptide ligands.
Journal of Medicinal Chemistry | 2010
Markus Muttenthaler; Aline Dantas de Araujo; Zoltan Dekan; Richard J. Lewis; Paul F. Alewood
Disulfide bond engineering is an important approach to improve the metabolic half-life of cysteine-containing peptides. Eleven analogues of oxytocin were synthesized including disulfide bond replacements by thioether, selenylsulfide, diselenide, and ditelluride bridges, and their stabilities in human plasma and activity at the human oxytocin receptor were assessed. The cystathionine (K(i) = 1.5 nM, and EC₅₀ = 32 nM), selenylsulfide (K(i) = 0.29/0.72 nM, and EC₅₀ = 2.6/154 nM), diselenide (K(i) = 11.8 nM, and EC₅₀ = 18 nM), and ditelluride analogues (K(i) = 7.6 nM, and EC₅₀ = 27.3 nM) retained considerable affinity and functional potency as compared to oxytocin (K(i) = 0.79 nM, and EC₅₀ = 15 nM), while shortening the disulfide bridge abolished binding and functional activity. The mimetics showed a 1.5-3-fold enhancement of plasma stability as compared to oxytocin (t(½) = 12 h). By contrast, the all-D-oxytocin and head to tail cyclic oxytocin analogues, while significantly more stable with half-lives greater than 48 h, had little or no detectable binding or functional activity.
Nature Communications | 2014
Aline Dantas de Araujo; Mehdi Mobli; Joel Castro; Andrea M. Harrington; Irina Vetter; Zoltan Dekan; Markus Muttenthaler; Jingjing Wan; Richard J. Lewis; Glenn F. King; Stuart M. Brierley; Paul F. Alewood
Poor oral availability and susceptibility to reduction and protease degradation is a major hurdle in peptide drug development. However, drugable receptors in the gut present an attractive niche for peptide therapeutics. Here we demonstrate, in a mouse model of chronic abdominal pain, that oxytocin receptors are significantly upregulated in nociceptors innervating the colon. Correspondingly, we develop chemical strategies to engineer non-reducible and therefore more stable oxytocin analogues. Chemoselective selenide macrocyclization yields stabilized analogues equipotent to native oxytocin. Ultra-high-field nuclear magnetic resonance structural analysis of native oxytocin and the seleno-oxytocin derivatives reveals that oxytocin has a pre-organized structure in solution, in marked contrast to earlier X-ray crystallography studies. Finally, we show that these seleno-oxytocin analogues potently inhibit colonic nociceptors both in vitro and in vivo in mice with chronic visceral hypersensitivity. Our findings have potentially important implications for clinical use of oxytocin analogues and disulphide-rich peptides in general.
Journal of Biological Chemistry | 2008
Sébastien Dutertre; Daniel E. Croker; Norelle L. Daly; Markus Muttenthaler; Natalie G. Lumsden; David J. Craik; Paul F. Alewood; Gilles Guillon; Richard J. Lewis
We report the discovery of conopressin-T, a novel bioactive peptide isolated from Conus tulipa venom. Conopressin-T belongs to the vasopressin-like peptide family and displays high sequence homology to the mammalian hormone oxytocin (OT) and to vasotocin, the endogenous vasopressin analogue found in teleost fish, the cone snails prey. Conopressin-T was found to act as a selective antagonist at the human V1a receptor. All peptides in this family contain two conserved amino acids within the exocyclic tripeptide (Pro7 and Gly9), which are replaced with Leu7 and Val9 in conopressin-T. Whereas conopressin-T binds only to OT and V1a receptors, an L7P analogue had increased affinity for the V1a receptor and weak V2 receptor binding. Surprisingly, replacing Gly9 with Val9 in OT and vasopressin revealed that this position can function as an agonist/antagonist switch at the V1a receptor. NMR structures of both conopressin-T and L7P analogue revealed a marked difference in the orientation of the exocyclic tripeptide that may serve as templates for the design of novel ligands with enhanced affinity for the V1a receptor.
Journal of Biological Chemistry | 2010
Anton A. Grishin; C-I Anderson Wang; Markus Muttenthaler; Paul F. Alewood; Richard J. Lewis; David J. Adams
Non-native disulfide isomers of α-conotoxins are generally inactive although some unexpectedly demonstrate comparable or enhanced bioactivity. The actions of “globular” and “ribbon” isomers of α-conotoxin AuIB have been characterized on α3β4 nicotinic acetylcholine receptors (nAChRs) heterologously expressed in Xenopus oocytes. Using two-electrode voltage clamp recording, we showed that the inhibitory efficacy of the ribbon isomer of AuIB is limited to ∼50%. The maximal inhibition was stoichiometry-dependent because altering α3:β4 RNA injection ratios either increased AuIB(ribbon) efficacy (10α:1β) or completely abolished blockade (1α:10β). In contrast, inhibition by AuIB(globular) was independent of injection ratios. ACh-evoked current amplitude was largest for 1:10 injected oocytes and smallest for the 10:1 ratio. ACh concentration-response curves revealed high (HS, 1:10) and low (LS, 10:1) sensitivity α3β4 nAChRs with corresponding EC50 values of 22.6 and 176.9 μm, respectively. Increasing the agonist concentration antagonized the inhibition of LS α3β4 nAChRs by AuIB(ribbon), whereas inhibition of HS and LS α3β4 nAChRs by AuIB(globular) was unaffected. Inhibition of LS and HS α3β4 nAChRs by AuIB(globular) was insurmountable and independent of membrane potential. Molecular docking simulation suggested that AuIB(globular) is likely to bind to both α3β4 nAChR stoichiometries outside of the ACh-binding pocket, whereas AuIB(ribbon) binds to the classical agonist-binding site of the LS α3β4 nAChR only. In conclusion, the two isomers of AuIB differ in their inhibitory mechanisms such that AuIB(ribbon) inhibits only LS α3β4 nAChRs competitively, whereas AuIB(globular) inhibits α3β4 nAChRs irrespective of receptor stoichiometry, primarily by a non-competitive mechanism.
PLOS ONE | 2012
Christian W. Gruber; Markus Muttenthaler
Natural peptides of great number and diversity occur in all organisms, but analyzing their peptidome is often difficult. With natural product drug discovery in mind, we devised a genome-mining approach to identify defense- and neuropeptides in the genomes of social ants from Atta cephalotes (leaf-cutter ant), Camponotus floridanus (carpenter ant) and Harpegnathos saltator (basal genus). Numerous peptide-encoding genes of defense peptides, in particular defensins, and neuropeptides or regulatory peptide hormones, such as allatostatins and tachykinins, were identified and analyzed. Most interestingly we annotated genes that encode oxytocin/vasopressin-related peptides (inotocins) and their putative receptors. This is the first piece of evidence for the existence of this nonapeptide hormone system in ants (Formicidae) and supports recent findings in Tribolium castaneum (red flour beetle) and Nasonia vitripennis (parasitoid wasp), and therefore its confinement to some basal holometabolous insects. By contrast, the absence of the inotocin hormone system in Apis mellifera (honeybee), another closely-related member of the eusocial Hymenoptera clade, establishes the basis for future studies on the molecular evolution and physiological function of oxytocin/vasopressin-related peptides (vasotocin nonapeptide family) and their receptors in social insects. Particularly the identification of ant inotocin and defensin peptide sequences will provide a basis for future pharmacological characterization in the quest for potent and selective lead compounds of therapeutic value.
Current Pharmaceutical Design | 2011
Markus Muttenthaler; Kalyana B. Akondi; Paul F. Alewood
Conotoxins are small bioactive highly structured peptides from the venom of marine cone snails (genus Conus). Over the past 50 million years these molluscs have developed a complex venom cocktail for each species that is comprised of 100-2000 distinct cysteine- rich peptides for prey capture and defence. This review focuses on an important and well-studied class of conotoxins, the α- conotoxins. These α-conotoxins are potent and selective antagonists of various subtypes of the nicotinic acetylcholine receptors (nAChRs). Key structure-activity relationship studies are presented to illustrate the common motifs, structural features and pharmacophores that define this interesting peptide class. Additionally, their synthesis, chemical modifications, the development of more selective and stable analogues and their therapeutic potential are discussed.
Biochemical Society Transactions | 2013
Johannes Koehbach; Thomas Stockner; Christian Bergmayr; Markus Muttenthaler; Christian W. Gruber
The design and development of selective ligands for the human OT (oxytocin) and AVP (arginine vasopressin) receptors is a big challenge since the different receptor subtypes and their native peptide ligands display great similarity. Detailed understanding of the mechanism of OTs interaction with its receptor is important and may assist in the ligand- or structure-based design of selective and potent ligands. In the present article, we compared 69 OT- and OT-like receptor sequences with regards to their molecular evolution and diversity, utilized an in silico approach to map the common ligand interaction sites of recently published G-protein-coupled receptor structures to a model of the human OTR (OT receptor) and compared these interacting residues within a selection of different OTR sequences. Our analysis suggests the existence of a binding site for OT peptides within the common transmembrane core region of the receptor, but it appears extremely difficult to identify receptor or ligand residues that could explain the selectivity of OT to its receptors. We remain confident that the presented evolutionary overview and modelling approach will aid interpretation of forthcoming OTR crystal structures.