Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Nurmi is active.

Publication


Featured researches published by Markus Nurmi.


Biochimica et Biophysica Acta | 2008

Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light

Mikko Tikkanen; Markus Nurmi; Saijaliisa Kangasjärvi; Eva-Mari Aro

Phosphorylation of photosystem II (PSII) reaction center protein D1 has been hypothesised to function as a signal for the migration of photodamaged PSII core complex from grana membranes to stroma lamellae for concerted degradation and replacement of the photodamaged D1 protein. Here, by using the mutants with impaired capacity (stn8) or complete lack (stn7 stn8) in phosphorylation of PSII core proteins, the role of phosphorylation in PSII photodamage and repair was investigated. We show that the lack of PSII core protein phosphorylation disturbs the disassembly of PSII supercomplexes at high light, which is a prerequisite for efficient migration of damaged PSII complexes from grana to stroma lamellae for repair. This results in accumulation of photodamaged PSII complexes, which in turn results, upon prolonged exposure to high light (HL), in general oxidative damage of photosynthetic proteins in the thylakoid membrane.


Biochimica et Biophysica Acta | 2008

Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants

Mikko Tikkanen; Markus Nurmi; Marjaana Suorsa; Ravi Danielsson; Fikret Mamedov; Stenbjoern Styring; Eva-Mari Aro

Phosphorylation-dependent movement of the light-harvesting complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) takes place in order to balance the function of the two photosystems. Traditionally, the phosphorylatable fraction of LHCII has been considered as the functional unit of this dynamic regulation. Here, a mechanical fractionation of the thylakoid membrane of Spinacia oleracea was performed from leaves both in the phosphorylated state (low light, LL) and in the dephosphorylated state (dark, D) in order to compare the phosphorylation-dependent protein movements with the excitation changes occurring in the two photosystems upon LHCII phosphorylation. Despite the fact that several LHCII proteins migrate to stroma lamellae when LHCII is phosphorylated, no increase occurs in the 77 K fluorescence emitted from PSI in this membrane fraction. On the contrary, such an increase in fluorescence occurs in the grana margin fraction, and the functionally important mobile unit is the PSI-LHCI complex. A new model for LHCII phosphorylation driven regulation of relative PSII/PSI excitation thus emphasises an increase in PSI absorption cross-section occurring in grana margins upon LHCII phosphorylation and resulting from the movement of PSI-LHCI complexes from stroma lamellae and subsequent co-operation with the P-LHCII antenna from the grana. The grana margins probably give a flexibility for regulation of linear and cyclic electron flow in plant chloroplasts.


Philosophical Transactions of the Royal Society B | 2012

Regulation of the photosynthetic apparatus under fluctuating growth light

Mikko Tikkanen; Michele Grieco; Markus Nurmi; Marjaana Rantala; Marjaana Suorsa; Eva-Mari Aro

Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b6f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.


Photosynthesis Research | 2008

Towards understanding the functional difference between the two PsbO isoforms in Arabidopsis thaliana—insights from phenotypic analyses of psbo knockout mutants

Björn Lundin; Markus Nurmi; Marc Rojas-Stuetz; Eva-Mari Aro; Iwona Adamska

The extrinsic PsbO subunit of the water-oxidizing photosystem II (PSII) complex is represented by two isoforms in Arabidopsis thaliana, namely PsbO1 and PsbO2. Recent analyses of psbo1 and psbo2 knockout mutants have brought insights into their roles in photosynthesis and light stress. Here we analyzed the two psbo mutants in terms of PsbOs expression pattern, organization of PSII complexes and GTPase activity. Both PsbOs are present in wild-type plants, and their expression is mutually controlled in the mutants. Almost all PSII complexes are in the monomeric form not only in the psbo1 but also in the psbo2 mutant grown under high-light conditions. This results either from an enhanced susceptibility of PSII to photoinactivation or from malfunction of the repair cycle. Notably, the psbo1 mutant displays such problems even under growth-light conditions. These results together with the finding that PsbO2 has a threefold higher GTPase activity than PsbO1 have significance for the turnover of the PSII D1 subunit in Arabidopsis.


Plant Physiology | 2010

Role of Thylakoid ATP/ADP Carrier in Photoinhibition and Photoprotection of Photosystem II in Arabidopsis

Lan Yin; Björn Lundin; Martine Bertrand; Markus Nurmi; Katalin Solymosi; Saijaliisa Kangasjärvi; Eva-Mari Aro; Benoît Schoefs

The chloroplast thylakoid ATP/ADP carrier (TAAC) belongs to the mitochondrial carrier superfamily and supplies the thylakoid lumen with stromal ATP in exchange for ADP. Here, we investigate the physiological consequences of TAAC depletion in Arabidopsis (Arabidopsis thaliana). We show that the deficiency of TAAC in two T-DNA insertion lines does not modify the chloroplast ultrastructure, the relative amounts of photosynthetic proteins, the pigment composition, and the photosynthetic activity. Under growth light conditions, the mutants initially displayed similar shoot weight, but lower when reaching full development, and were less tolerant to high light conditions in comparison with the wild type. These observations prompted us to study in more detail the effects of TAAC depletion on photoinhibition and photoprotection of the photosystem II (PSII) complex. The steady-state phosphorylation levels of PSII proteins were not affected, but the degradation of the reaction center II D1 protein was blocked, and decreased amounts of CP43-less PSII monomers were detected in the mutants. Besides this, the mutant leaves displayed a transiently higher nonphotochemical quenching of chlorophyll fluorescence than the wild-type leaves, especially at low light. This may be attributed to the accumulation in the absence of TAAC of a higher electrochemical H+ gradient in the first minutes of illumination, which more efficiently activates photoprotective xanthophyll cycle-dependent and independent mechanisms. Based on these results, we propose that TAAC plays a critical role in the disassembly steps during PSII repair and in addition may balance the trans-thylakoid electrochemical H+ gradient storage.


Biochimica et Biophysica Acta | 2009

Comparison of the electron transport properties of the psbo1 and psbo2 mutants of Arabidopsis thaliana.

Yagut Allahverdiyeva; Fikret Mamedov; Maija Holmström; Markus Nurmi; Björn Lundin; Stenbjörn Styring; Eva-Mari Aro

Genome sequence of Arabidopsis thaliana (Arabidopsis) revealed two psbO genes (At5g66570 and At3g50820) which encode two distinct PsbO isoforms: PsbO1 and PsbO2, respectively. To get insights into the function of the PsbO1 and PsbO2 isoforms in Arabidopsis we have performed systematic and comprehensive investigations of the whole photosynthetic electron transfer chain in the T-DNA insertion mutant lines, psbo1 and psbo2. The absence of the PsbO1 isoform and presence of only the PsbO2 isoform in the psbo1 mutant results in (i) malfunction of both the donor and acceptor sides of Photosystem (PS) II and (ii) high sensitivity of PSII centers to photodamage, thus implying the importance of the PsbO1 isoform for proper structure and function of PSII. The presence of only the PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids. These results in modification of the whole electron transfer chain with higher rate of cyclic electron transfer around PSI, faster induction of NPQ and a larger size of the PQ-pool compared to WT, being in line with apparently increased chlororespiration in the psbo1 mutant plants. The presence of only the PsbO1 isoform in the psbo2 mutant did not induce any significant differences in the performance of PSII under standard growth conditions as compared to WT. Nevertheless, under high light illumination, it seems that the presence of also the PsbO2 isoform becomes favourable for efficient repair of the PSII complex.


Biochemistry | 2009

Intrinsically unstructured phosphoprotein TSP9 regulates light harvesting in Arabidopsis thaliana.

Rikard Fristedt; Inger Carlberg; Agnieszka Zygadlo; Mirva Piippo; Markus Nurmi; Eva-Mari Aro; Henrik Vibe Scheller; Alexander V. Vener

Thylakoid-soluble phosphoprotein of 9 kDa, TSP9, is an intrinsically unstructured plant-specific protein [Song, J., et al. (2006) Biochemistry 45, 15633-15643] with unknown function but established associations with light-harvesting proteins and peripheries of both photosystems [Hansson, M., et al. (2007) J. Biol. Chem. 282, 16214-16222]. To investigate the function of this protein, we used a combination of reverse genetics and biochemical and fluorescence measurement methods in Arabidopsis thaliana. Differential gene expression analysis of plants with a T-DNA insertion in the TSP9 gene using an array of 24000 Arabidopsis genes revealed disappearance of high light-dependent induction of a specific set of mostly signaling and unknown proteins. TSP9-deficient plants had reduced levels of in vivo phosphorylation of light-harvesting complex II polypeptides. Recombinant TSP9 was phosphorylated in light by thylakoid membranes isolated from the wild-type and mutant plants lacking STN8 protein kinase but not by the thylakoids deficient in STN7 kinase, essential for photosynthetic state transitions. TSP9-lacking mutant and RNAi plants with downregulation of TSP9 showed reduced ability to perform state transitions. The nonphotochemical quenching of chlorophyll fluorescence at high light intensities was also less efficient in the mutant compared to wild-type plants. Blue native electrophoresis of thylakoid membrane protein complexes revealed that TSP9 deficiency increased relative stability of photosystem II dimers and supercomplexes. It is concluded that TSP9 regulates plant light harvesting acting as a membrane-binding protein facilitating dissociation of light-harvesting proteins from photosystem II.


Plant Cell and Environment | 2009

Cell‐specific mechanisms and systemic signalling as emerging themes in light acclimation of C3 plants

Saijaliisa Kangasjärvi; Markus Nurmi; Mikko Tikkanen; Eva-Mari Aro

Chloroplasts perform essential signalling functions in light acclimation and various stress responses in plants. Research on chloroplast signalling has provided fundamental information concerning the diversity of cellular responses to changing environmental conditions. Evidence has also accumulated indicating that different cell types possess specialized roles in regulation of leaf development and stress acclimation when challenged by environmental cues. Leaf veins are flanked by a layer of elongated chloroplast-containing bundle sheath cells, which due to their central position hold the potential to control the flux of information inside the leaves. Indeed, a specific role for bundle sheath cells in plant acclimation to various light regimes is currently emerging. Moreover, perception of light stress initiates systemic signals that spread through the vasculature to confer stress resistance in non-exposed parts of the plant. Such long-distance signalling functions are related to unique characteristics of reactive oxygen species and their detoxification in bundle sheath cells. Novel techniques for analysis of distinct tissue types, together with Arabidopsis thaliana mutants with vasculature-specific phenotypes, have proven instrumental in dissection of structural hierarchy among regulatory processes in leaves. This review emphasizes the current knowledge concerning the role of vascular bundle sheath cells in light-dependent acclimation processes of C3 plants.


Journal of Plant Physiology | 2011

A chloroplast-targeted DnaJ protein AtJ8 is negatively regulated by light and has rapid turnover in darkness.

Kun-Ming Chen; Mirva Piippo; Maija Holmström; Markus Nurmi; Eveliina Pakula; Marjaana Suorsa; Eva-Mari Aro

The DnaJ proteins (also called as J proteins, J domain proteins or HSP40 proteins) function as molecular co-chaperones for the HSP70 proteins. We assessed the expression of the small chloroplast-targeted DnaJ protein, the AtJ8 protein, by subjecting the wild type Arabidopsis plants to different illumination conditions. It is shown that the expression of the transcripts and proteins of the ATJ8 gene is primarily regulated at the level of transcription. When plants were incubated under high light for 3h, both the transcripts and proteins were completely abolished. Upon transfer of plants to darkness, the transcripts started rapidly accumulating, and subsequently, the AtJ8 protein became visible after 2h in darkness. Conversely, incubation of plants in darkness or under low light intensities induced expression of the ATJ8 transcripts and proteins. Feeding plants with sugars clearly decreased the transcript and protein levels, and incubation with cycloheximide revealed a rapid turnover for AtJ8 in darkness. Moreover, the AtJ8 protein was found to be nearly missing from the var1 mutant, which lacks the FTSH5 protease. It is concluded that AtJ8 is expressed mainly in darkness, is prone to a rapid turnover but is partially stabilized by the FTSH proteases.


Physiologia Plantarum | 2018

Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP+ reductases

Minna M. Koskela; Käthe M. Dahlström; Guillermina Goñi; Nina Lehtimäki; Markus Nurmi; Adrián Velázquez-Campoy; Guy Hanke; Bettina Bölter; Tiina A. Salminen; Milagros Medina; Paula Mulo

Plastidic ferredoxin-NADP+ oxidoreductases (FNRs; EC:1.18.1.2) together with bacterial type FNRs (FPRs) form the plant-type FNR family. Members of this group contain a two-domain scaffold that forms the basis of an extended superfamily of flavin adenine dinucleotide (FAD) dependent oxidoreductases. In this study, we show that the Arabidopsis thaliana At1g15140 [Ferredoxin-NADP+ oxidoreductase-like (FNRL)] is an FAD-containing NADPH dependent oxidoreductase present in the chloroplast stroma. Determination of the kinetic parameters using the DCPIP NADPH-dependent diaphorase assay revealed that the reaction catalysed by a recombinant FNRL protein followed a saturation Michaelis-Menten profile on the NADPH concentration with kcat  = 3.2 ± 0.2 s-1 , KmNADPH  = 1.6 ± 0.3 μM and kcat /KmNADPH  = 2.0 ± 0.4 μM-1  s-1 . Biochemical assays suggested that FNRL is not likely to interact with Arabidopsis ferredoxin 1, which is supported by the sequence analysis implying that the known Fd-binding residues in plastidic FNRs differ from those of FNRL. In addition, based on structural modelling FNRL has an FAD-binding N-terminal domain built from a six-stranded β-sheet and one α-helix, and a C-terminal NADP+ -binding α/β domain with a five-stranded β-sheet with a pair of α-helices on each side. The FAD-binding site is highly hydrophobic and predicted to bind FAD in a bent conformation typically seen in bacterial FPRs.

Collaboration


Dive into the Markus Nurmi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Lundin

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lan Yin

Linköping University

View shared research outputs
Top Co-Authors

Avatar

Martine Bertrand

Conservatoire national des arts et métiers

View shared research outputs
Researchain Logo
Decentralizing Knowledge