Markus O. Zimmermann
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus O. Zimmermann.
Journal of Medicinal Chemistry | 2013
Rainer Wilcken; Markus O. Zimmermann; Andreas Lange; Andreas C. Joerger; Frank M. Boeckler
Halogen bonding has been known in material science for decades, but until recently, halogen bonds in protein-ligand interactions were largely the result of serendipitous discovery rather than rational design. In this Perspective, we provide insights into the phenomenon of halogen bonding, with special focus on its role in drug discovery. We summarize the theoretical background defining its strength and directionality, provide a systematic analysis of its occurrence and interaction geometries in protein-ligand complexes, and give recent examples where halogen bonding has been successfully harnessed for lead identification and optimization. In light of these data, we discuss the potential and limitations of exploiting halogen bonds for molecular recognition and rational drug design.
Journal of the American Chemical Society | 2012
Rainer Wilcken; Xiangrui Liu; Markus O. Zimmermann; Trevor J. Rutherford; Alan R. Fersht; Andreas C. Joerger; Frank M. Boeckler
The destabilizing p53 cancer mutation Y220C creates a druggable surface crevice. We developed a strategy exploiting halogen bonding for lead discovery to stabilize the mutant with small molecules. We designed halogen-enriched fragment libraries (HEFLibs) as starting points to complement classical approaches. From screening of HEFLibs and subsequent structure-guided design, we developed substituted 2-(aminomethyl)-4-ethynyl-6-iodophenols as p53-Y220C stabilizers. Crystal structures of their complexes highlight two key features: (i) a central scaffold with a robust binding mode anchored by halogen bonding of an iodine with a main-chain carbonyl and (ii) an acetylene linker, enabling the targeting of an additional subsite in the crevice. The best binders showed induction of apoptosis in a human cancer cell line with homozygous Y220C mutation. Our structural and biophysical data suggest a more widespread applicability of HEFLibs in drug discovery.
Journal of Computer-aided Molecular Design | 2012
Rainer Wilcken; Markus O. Zimmermann; Andreas Lange; Stefan Zahn; Frank M. Boeckler
Halogen bonds are specific embodiments of the sigma hole bonding paradigm. They represent directional interactions between the halogens chlorine, bromine, or iodine and an electron donor as binding partner. Using quantum chemical calculations at the MP2 level, we systematically explore how they can be used in molecular design to address the omnipresent carbonyls of the protein backbone. We characterize energetics and directionality and elucidate their spatial variability in sub-optimal geometries that are expected to occur in protein–ligand complexes featuring a multitude of concomitant interactions. By deriving simple rules, we aid medicinal chemists and chemical biologists in easily exploiting them for scaffold decoration and design. Our work shows that carbonyl–halogen bonds may be used to expand the patentable medicinal chemistry space, redefining halogens as key features. Furthermore, this data will be useful for implementing halogen bonds into pharmacophore models or scoring functions making the QM information available for automatic molecular recognition in virtual high throughput screening.
Journal of Medicinal Chemistry | 2012
Bassam A. Abu Thaher; Martina Arnsmann; Frank Totzke; Jan E. Ehlert; Michael H.G. Kubbutat; Christoph Schächtele; Markus O. Zimmermann; Pierre Koch; Frank M. Boeckler; Stefan Laufer
In the course of searching for new p38α MAP kinase inhibitors, we found that the regioisomeric switch from 3-(4-fluorophenyl)-4-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine to 4-(4-fluorophenyl)-3-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine led to an almost complete loss of p38α inhibition, but they showed activity against important cancer kinases. Among the tested derivatives, 4-(4-fluorophenyl)-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-1H-pyrazol-5-amine (6a) exhibited the best activity, with IC(50) in the nanomolar range against Src, B-Raf wt, B-Raf V600E, EGFRs, and VEGFR-2, making it a good lead for novel anticancer programs.
Journal of the American Chemical Society | 2015
Andreas Lange; Marcel Günther; Felix Michael Büttner; Markus O. Zimmermann; Johannes Heidrich; Susanne Hennig; Stefan Zahn; Christoph Schall; Adrian Sievers-Engler; Francesco Ansideri; Pierre Koch; Michael Laemmerhofer; Thilo Stehle; Stefan Laufer; Frank M. Boeckler
We target the gatekeeper MET146 of c-Jun N-terminal kinase 3 (JNK3) to exemplify the applicability of X···S halogen bonds in molecular design using computational, synthetic, structural and biophysical techniques. In a designed series of aminopyrimidine-based inhibitors, we unexpectedly encounter a plateau of affinity. Compared to their QM-calculated interaction energies, particularly bromine and iodine fail to reach the full potential according to the size of their σ-hole. Instead, mutation of the gatekeeper residue into leucine, alanine, or threonine reveals that the heavier halides can significantly influence selectivity in the human kinome. Thus, we demonstrate that, although the choice of halogen may not always increase affinity, it can still be relevant for inducing selectivity. Determining the crystal structure of the iodine derivative in complex with JNK3 (4X21) reveals an unusual bivalent halogen/chalcogen bond donated by the ligand and the back-pocket residue MET115. Incipient repulsion from the too short halogen bond increases the flexibility of Cε of MET146, whereas the rest of the residue fails to adapt being fixed by the chalcogen bond. This effect can be useful to induce selectivity, as the necessary combination of methionine residues only occurs in 9.3% of human kinases, while methionine is the predominant gatekeeper (39%).
Journal of Chemical Theory and Computation | 2011
Rainer Wilcken; Markus O. Zimmermann; Andreas Lange; Stefan Zahn; Barbara Kirchner; Frank M. Boeckler
Halogen bonds are directional interactions involving an electron donor as binding partner. Employing quantum chemical calculations, we explore how they can be used in molecular design to address the sulfur atom in a methionine residue in a previously neglected, directed manner. We characterize energetics and directionality of these halogen bonds and elucidate their spatial variability in suboptimal geometries that are expected to occur in protein-ligand complexes featuring a multitude of concomitant interactions. We derive simple rules allowing medicinal chemists and chemical biologists to easily determine preferred areas of interaction within a binding site and to exploit them for scaffold decoration and design. Our work shows that sulfur-halogen bonds may be used to expand the patentable medicinal chemistry space. We demonstrate their potential to increase binding affinities and suggest that they can significantly contribute to inducing and tuning subtype selectivities.
Future Medicinal Chemistry | 2014
Markus O. Zimmermann; Andreas Lange; Rainer Wilcken; Markus B Cieslik; Thomas E. Exner; Andreas C. Joerger; Pierre Koch; Frank M. Boeckler
Halogen bonding has recently experienced a renaissance, gaining increased recognition as a useful molecular interaction in the life sciences. Halogen bonds are favorable, fairly directional interactions between an electropositive region on the halogen (the σ-hole) and a number of different nucleophilic interaction partners. Some aspects of halogen bonding are not yet understood well enough to take full advantage of its potential in drug discovery. We describe and present the concept of halogen-enriched fragment libraries. These libraries consist of unique chemical probes, facilitating the identification of favorable halogen bonds by sharing the advantages of classical fragment-based screening. Besides providing insights into the nature and applicability of halogen bonding, halogen-enriched fragment libraries provide smart starting points for hit-to-lead evolution.
Journal of Chemical Information and Modeling | 2015
Markus O. Zimmermann; Andreas Lange; Frank M. Boeckler
We present a QM-derived empirical scoring function for the interaction between aromatic halogenated ligands and the carbonyl oxygen atom of the protein backbone. Applying this scoring function, we developed an algorithm that evaluates the potential of protein-bound ligands to form favorable halogen-bonding contacts upon scaffold decoration with chlorine, bromine, or iodine. Full recovery of all existing halogen bonds in the PDB involving the protein backbone was achieved with our protocol. Interestingly, the potential for introducing halogen bonds through scaffold decoration of unsubstituted aromatic carbon atoms appears to easily match the number of previously known halogen bonds. Our approach can thus be used as a blueprint for integration of halogen bonding into general empirical scoring functions, which at present ignore this interaction. Most importantly, we were able to identify a substantial number of protein-ligand complexes where the benefits and challenges of introducing a halogen bond by molecular design can be studied experimentally.
Journal of Chemical Information and Modeling | 2013
Andreas Lange; Markus O. Zimmermann; Rainer Wilcken; Stefan Zahn; Frank M. Boeckler
Halogen bonds are directional noncovalent interactions that can be used to target electron donors in a protein binding site. In this study, we employ quantum chemical calculations to explore halogen···nitrogen contacts involving histidine side chains. We characterize the energetics on the MP2 level of theory using SCS-MP2 and CCSD(T)/CBS as reference calculations and elucidate their energy profile in suboptimal geometries. We derive simple rules allowing medicinal chemists and chemical biologists to easily determine preferred areas of interaction in a binding site and exploit them for scaffold decoration and design. Our work shows that nitrogen-halogen bonds are valuable interactions that are this far underexploited in patent applications, lead structure, and clinical candidate selection. We highlight their potential to increase binding affinities and suggest that they can significantly contribute to inducing and tuning subtype selectivities.
Journal of Chemical Information and Modeling | 2016
Markus O. Zimmermann; Andreas Lange; Stefan Zahn; Thomas E. Exner; Frank M. Boeckler
Using halogen-specific Connolly type molecular surfaces, we herein invented a new type of surface-based interaction analysis employed for the study of halogen bonding toward model systems of biologically relevant carboxylates (ASP/GLU) and carboxamides (ASN/GLN). Database mining and statistical assessment of the PDB revealed that such interactions are widely underrepresented at the moment. We observed important distance-dependent adaptions of the binding modes of halobenzenes from a preferential oxygen-directed to a bifurcated interaction geometry of the carboxylate. In addition, halogen···π contacts perpendicular to the nitrogen atom of the carboxamide become increasingly important for the lighter halogens. Our analysis on a MP2/TZVPP level of theory is backed by CCSD(T)/CBS reference calculations. To put the vast interaction energies into perspective, we also performed COSMO-RS calculations of the solvation free energy. Facilitating the visualization of our results mapped onto any binding site of choice, we aim to inspire more design studies showcasing these underrepresented interactions.