Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Rey is active.

Publication


Featured researches published by Markus Rey.


Journal of Medicinal Chemistry | 2012

The Discovery of N-[5-(4-Bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-N′-propylsulfamide (Macitentan), an Orally Active, Potent Dual Endothelin Receptor Antagonist

Martin Bolli; Christoph Boss; Christoph Binkert; Stephan Buchmann; Daniel Bur; Patrick Hess; Marc Iglarz; Solange Meyer; Josiane Rein; Markus Rey; Alexander Treiber; Martine Clozel; Walter Fischli; Thomas Weller

Starting from the structure of bosentan (1), we embarked on a medicinal chemistry program aiming at the identification of novel potent dual endothelin receptor antagonists with high oral efficacy. This led to the discovery of a novel series of alkyl sulfamide substituted pyrimidines. Among these, compound 17 (macitentan, ACT-064992) emerged as particularly interesting as it is a potent inhibitor of ET(A) with significant affinity for the ET(B) receptor and shows excellent pharmacokinetic properties and high in vivo efficacy in hypertensive Dahl salt-sensitive rats. Compound 17 successfully completed a long-term phase III clinical trial for pulmonary arterial hypertension.


Experimental Biology and Medicine | 2006

Bosentan, Sildenafil, and Their Combination in the Monocrotaline Model of Pulmonary Hypertension in Rats:

Martine Clozel; Patrick Hess; Markus Rey; Marc Iglarz; Christoph Binkert; Changbin Qiu

The dual endothelin receptor antagonist, bosentan, and the phosphodiesterase inhibitor, sildenafil, are efficacious in experimental and clinical pulmonary hypertension (PHT). The effects of bosentan, sildenafil, and their combination were evaluated in rats with monocrotaline (MCT)-induced PHT. A first group consisted of control rats with no MCT injection. Four other groups of rats received MCT subcutaneously and were assigned to receive no treatment, 300 mg/kg/day bosentan as food admix, 100 mg/kg/day sildenafil in drinking water, or their combination for 4 weeks. The doses of bosentan and sildenafil were the maximally effective doses based on a dose-range–finding study. Mortality was 0%, 53%, 11%, 11%, and 0%, respectively, in the five different groups. Bosentan and sildenafil significantly attenuated the increase in mean pulmonary arterial pressure, and the combination had an additional effect. Similarly, bosentan, sildenafil, and, to a greater extent, their combination significantly reduced right ventricular (RV) hypertrophy. Bosentan, but not sildenafil, decreased norepinephrine and BNP plasma concentrations, reduced kidney weight, and normalized systemic hemodynamics. In conclusion, bosentan and sildenafil are efficacious in rats with chronic PHT, and their combination shows an additional effect for decreasing pulmonary arterial pressure, reducing plasma catecholamines, maintaining body weight, and reducing mortality.


Journal of Pharmacology and Experimental Therapeutics | 2005

The Urotensin-II Receptor Antagonist Palosuran Improves Pancreatic and Renal Function in Diabetic Rats

Martine Clozel; Patrick Hess; Changbin Qiu; Shuang-Shuang Ding; Markus Rey

Urotensin-II (U-II) is a cyclic peptide that acts through a specific G-protein-coupled receptor, UT receptor. Urotensin-II and UT receptors have been described in pancreas and kidney, but their function is not well understood. We studied the effects of chronic treatment of diabetic rats with the orally active selective U-II receptor antagonist palosuran. Streptozotocin treatment causes pancreatic β-cell destruction and leads to the development of hyperglycemia, dyslipidemia, and renal dysfunction. Long-term treatment of streptozotocin-induced diabetic rats with palosuran improved survival, increased insulin, and slowed the increase in glycemia, glycosylated hemoglobin, and serum lipids. Furthermore, palosuran increased renal blood flow and delayed the development of proteinuria and renal damage. The U-II system is unique in that it plays a role both in insulin secretion and in the renal complications of diabetes. Urotensin receptor antagonism might be a new therapeutic approach for the treatment of diabetes.


American Journal of Respiratory Cell and Molecular Biology | 2015

A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis.

Yasmina Bauer; John Tedrow; Simon de Bernard; Magdalena Birker-Robaczewska; Kevin F. Gibson; Brenda Juan Guardela; Patrick Hess; Axel Klenk; Kathleen O. Lindell; Sylvie Poirey; Bérengère Renault; Markus Rey; Edgar Weber; Oliver Nayler; Naftali Kaminski

The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat-human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-β1-treated primary human lung fibroblasts and transforming growth factor-β1-treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model-human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease.


Life Sciences | 2014

Comparison of pharmacological activity of macitentan and bosentan in preclinical models of systemic and pulmonary hypertension

Marc Iglarz; Alexandre Bossu; Daniel Wanner; Céline Bortolamiol; Markus Rey; Patrick Hess; Martine Clozel

AIMS The endothelin (ET) system is a tissular system, as the production of ET isoforms is mostly autocrine or paracrine. Macitentan is a novel dual ETA/ETB receptor antagonist with enhanced tissue distribution and sustained receptor binding properties designed to achieve a more efficacious ET receptor blockade. To determine if these features translate into improved efficacy in vivo, a study was designed in which rats with either systemic or pulmonary hypertension and equipped with telemetry were given macitentan on top of maximally effective doses of another dual ETA/ETB receptor antagonist, bosentan, which does not display sustained receptor occupancy and shows less tissue distribution. MAIN METHODS After establishing dose-response curves of both compounds in conscious, hypertensive Dahl salt-sensitive and pulmonary hypertensive bleomycin-treated rats, macitentan was administered on top of the maximal effective dose of bosentan. KEY FINDINGS In hypertensive rats, macitentan 30 mg/kg further decreased mean arterial blood pressure (MAP) by 19 mm Hg when given on top of bosentan 100 mg/kg (n=9, p<0.01 vs. vehicle). Conversely, bosentan given on top of macitentan failed to induce an additional MAP decrease. In pulmonary hypertensive rats, macitentan 30 mg/kg further decreased mean pulmonary artery pressure (MPAP) by 4 mm Hg on top of bosentan (n=8, p<0.01 vs. vehicle), whereas a maximal effective dose of bosentan given on top of macitentan did not cause any additional MPAP decrease. SIGNIFICANCE The add-on effect of macitentan on top of bosentan in two pathological models confirms that this novel compound can achieve a superior blockade of ET receptors and provides evidence for greater maximal efficacy.


Laboratory Animals | 2007

Measurements of blood pressure and electrocardiogram in conscious freely moving guineapigs: a model for screening QT interval prolongation effects

Patrick Hess; Markus Rey; Daniel Wanner; Beat Steiner; Martine Clozel

The pro-arrhythmic risk inherent to a new drug must be assessed at an early preclinical stage. Telemetry system implantation is a method widely used in vivo in various species. The present study was designed to assess whether conscious freely moving guineapigs can be used to predict QT prolongation in vivo. The guineapig has three advantages over the dog and the primate. First, it has specific ion channels similar to man; second, a smaller amount of test article is required for the investigation and third, its housing is less expensive. Under sterile conditions and isoflurane anaesthesia, telemetry transmitters were implanted intraperitoneally in male Dunkin Hartley guineapigs. Blood pressure, heart rate and electrocardiographic intervals were measured from two days up to eight months. Chronic implantation of the telemetry device did not lead to anatomic or macroscopic alterations in the abdominal cavity and no inflammation of the peritoneum or infection was observed. Four reference compounds were used: three positive (sotalol, terfenadine and dofetilide) and one negative reference (enalapril). Single oral administration of all three positive references dose-dependently induced bradycardia and QT corrected (QTc) prolongation. In contrast, neither enalapril nor its vehicle prolonged the QTc. These results demonstrate that the guineapig is both a suitable model and a good alternative to dogs or primates to assess the potential of compounds for QT interval prolongation in the early stages of drug development.


Journal of Cardiovascular Pharmacology | 2015

Comparison of Macitentan and Bosentan on Right Ventricular Remodeling in a Rat Model of Non-vasoreactive Pulmonary Hypertension.

Marc Iglarz; Kyle Landskroner; Yasmina Bauer; Magali Vercauteren; Markus Rey; Bérengère Renault; Rolf Studer; Enrico Vezzali; Diego Freti; Hakim Hadana; Manuela Schläpfer; Christophe Cattaneo; Céline Bortolamiol; Edgar Weber; Brian R. Whitby; Stephane Delahaye; Daniel Wanner; Pauline Steiner; Oliver Nayler; Patrick Hess; Martine Clozel

Aims: We compared the efficacy of macitentan, a novel dual endothelin A/endothelin B receptor antagonist, with that of another dual endothelin receptor antagonist, bosentan, in a rat model of non-vasoreactive pulmonary hypertension (PH) with particular emphasis on right ventricular (RV) remodeling. Methods and Results: Unlike monocrotaline or hypoxic/sugen rats, bleomycin-treated rats presented a non-vasoreactive PH characterized by the absence of pulmonary dilatation to adenosine. We therefore chose the bleomycin rat model to compare the effects of the maximally effective doses of macitentan and bosentan on pulmonary vascular and RV remodeling. Macitentan (100 mg·kg−1·d−1), but not bosentan (300 mg·kg−1·d−1), significantly prevented pulmonary vascular remodeling, RV hypertrophy, and cardiomyocyte diameter increase. Cardiac protection by macitentan was associated with a significant attenuation of genes related to cell hypertrophy and extracellular matrix remodeling. Microautoradiography and high performance liquid chromatography analysis showed greater distribution of macitentan than bosentan in the RV and pulmonary tissue. Conclusions: Macitentan was more efficacious than bosentan in preventing the development of pulmonary and RV hypertrophies in a model of non-vasoreactive PH. Greater ability to distribute into the tissue could contribute to the greater structural improvement by macitentan compared with bosentan.


Journal of Medicinal Chemistry | 2013

Novel S1P1 Receptor Agonists – Part 1: From Pyrazoles to Thiophenes

Martin Bolli; Claus Müller; Boris Mathys; Stefan Abele; Magdalena Birker; Roberto Bravo; Daniel Bur; Patrick Hess; Christopher Kohl; David Lehmann; Oliver Nayler; Markus Rey; Solange Meyer; Michael Scherz; Gunther Schmidt; Beat Steiner; Alexander Treiber; Jörg Velker; Thomas Weller

From a high-throughput screening campaign aiming at the identification of novel S1P1 receptor agonists, the pyrazole derivative 2 emerged as a hit structure. Medicinal chemistry efforts focused not only on improving the potency of the compound but in particular also on resolving its inherent instability issue. This led to the discovery of novel bicyclo[3.1.0]hexane fused thiophene derivatives. Compounds with high affinity and selectivity for S1P1 efficiently reducing the blood lymphocyte count in the rat were identified. For instance, compound 85 showed EC50 values of 7 and 2880 nM on S1P1 and S1P3, respectively, had favorable pharmacokinetic properties in rat and dog, distributed well into brain tissue, and efficiently and dose dependently reduced the blood lymphocyte count in the rat. After oral administration to spontaneously hypertensive rats, the S1P1 selective compound 85 showed no effect on mean arterial blood pressure and affected the heart rate during the wake phase of the animals only.


Journal of Medicinal Chemistry | 2014

Novel S1P1 Receptor Agonists - Part 2: From Bicyclo[3.1.0]hexane-Fused Thiophenes to Isobutyl Substituted Thiophenes

Martin Bolli; Jörg Velker; Claus Müller; Boris Mathys; Magdalena Birker; Roberto Bravo; Daniel Bur; Ruben de Kanter; Patrick Hess; Christopher Kohl; David Lehmann; Solange Meyer; Oliver Nayler; Markus Rey; Michael Scherz; Beat Steiner

Previously, we reported on the discovery of a novel series of bicyclo[3.1.0]hexane fused thiophene derivatives that serve as potent and selective S1P1 receptor agonists. Here, we discuss our efforts to simplify the bicyclohexane fused thiophene head. In a first step the bicyclohexane moiety could be replaced by a simpler, less rigid cyclohexane ring without compromising the S1P receptor affinity profile of these novel compounds. In a second step, the thiophene head was simplified even further by replacing the cyclohexane ring with an isobutyl group attached either to position 4 or position 5 of the thiophene. These structurally much simpler headgroups again furnished potent and selective S1P1 agonists (e.g., 87), which efficiently and dose dependently reduced the number of circulating lymphocytes upon oral administration to male Wistar rats. For several compounds discussed in this report lymphatic transport is an important route of absorption that may offer opportunities for a tissue targeted approach with minimal plasma exposure.


Journal of Medicinal Chemistry | 2015

4-((R)-2-{[6-((S)-3-Methoxypyrrolidin-1-yl)-2-phenylpyrimidine-4-carbonyl]amino}-3-phosphonopropionyl)piperazine-1-carboxylic Acid Butyl Ester (ACT-246475) and Its Prodrug (ACT-281959), a Novel P2Y12 Receptor Antagonist with a Wider Therapeutic Window in the Rat Than Clopidogrel.

Eva Caroff; Francis Hubler; Emmanuel Meyer; Dorte Renneberg; Carmela Gnerre; Alexander Treiber; Markus Rey; Patrick Hess; Beat Steiner; Kurt Hilpert; Markus A. Riederer

Recent post hoc analyses of several clinical trials with P2Y12 antagonists showed the need for new molecules being fully efficacious as antiplatelet agents and having a reduced propensity to cause major bleeding. We have previously reported the discovery of the 2-phenylpyrimidine-4-carboxamide analogs as P2Y12 antagonists with nanomolar potency in the disease-relevant platelet aggregation assay in human plasma. Herein we present the optimization steps that led to the discovery of clinical candidate ACT-246475 (30d). The key step was the replacement of the carboxylic acid functionality by a phosphonic acid group which delivered the most potent molecules of the program. In addition, low in vivo clearance in rat and dog was achieved for the first time. Since the bioavailability of 30d was low in rat and dog, we developed the bis((isopropoxycarbonyl)oxy)methyl ester prodrug (ACT-281959, 45). Compound 30d showed efficacy in the rat ferric chloride thrombosis model when administered intravenously as parent or orally as its prodrug 45. Moreover, 30d displays a wider therapeutic window as compared to clopidogrel in the rat surgical blood loss model.

Collaboration


Dive into the Markus Rey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge