Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Sällman Almén is active.

Publication


Featured researches published by Markus Sällman Almén.


Nature Reviews Drug Discovery | 2011

Trends in the exploitation of novel drug targets

Mathias Rask-Andersen; Markus Sällman Almén; Helgi B. Schiöth

The discovery and exploitation of new drug targets is a key focus for both the pharmaceutical industry and academic biomedical research. To provide an insight into trends in the exploitation of new drug targets, we have analysed the drugs that were approved by the US Food and Drug Administration during the past three decades and examined the interactions of these drugs with therapeutic targets that are encoded by the human genome, using the DrugBank database and extensive manual curation. We have identified 435 effect-mediating drug targets in the human genome, which are modulated by 989 unique drugs, through 2,242 drug–target interactions. We also analyse trends in the introduction of drugs that modulate previously unexploited targets, and discuss the network pharmacology of the drugs in our data set.


BMC Biology | 2009

Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin

Markus Sällman Almén; Karl J. V. Nordström; Robert Fredriksson; Helgi B. Schiöth

BackgroundMembrane proteins form key nodes in mediating the cells interaction with the surroundings, which is one of the main reasons why the majority of drug targets are membrane proteins.ResultsHere we mined the human proteome and identified the membrane proteome subset using three prediction tools for alpha-helices: Phobius, TMHMM, and SOSUI. This dataset was reduced to a non-redundant set by aligning it to the human genome and then clustered with our own interactive implementation of the ISODATA algorithm. The genes were classified and each protein group was manually curated, virtually evaluating each sequence of the clusters, applying systematic comparisons with a range of databases and other resources. We identified 6,718 human membrane proteins and classified the majority of them into 234 families of which 151 belong to the three major functional groups: receptors (63 groups, 1,352 members), transporters (89 groups, 817 members) or enzymes (7 groups, 533 members). Also, 74 miscellaneous groups with 697 members were determined. Interestingly, we find that 41% of the membrane proteins are singlets with no apparent affiliation or identity to any human protein family. Our results identify major differences between the human membrane proteome and the ones in unicellular organisms and we also show a strong bias towards certain membrane topologies for different functional classes: 77% of all transporters have more than six helices while 60% of proteins with an enzymatic function and 88% receptors, that are not GPCRs, have only one single membrane spanning α-helix. Further, we have identified and characterized new gene families and novel members of existing families.ConclusionHere we present the most detailed roadmap of gene numbers and families to our knowledge, which is an important step towards an overall classification of the entire human proteome. We estimate that 27% of the total human proteome are alpha-helical transmembrane proteins and provide an extended classification together with in-depth investigations of the membrane proteomes functional, structural, and evolutionary features.


The Journal of Clinical Endocrinology and Metabolism | 2012

Acute Sleep Deprivation Enhances the Brain's Response to Hedonic Food Stimuli: An fMRI Study

Christian Benedict; Samantha J. Brooks; Owen O'Daly; Markus Sällman Almén; Arvid Morell; Karin Åberg; Malin Gingnell; Bernd Schultes; Manfred Hallschmid; Jan-Erik Broman; Elna-Marie Larsson; Helgi B. Schiöth

CONTEXT There is growing recognition that a large number of individuals living in Western society are chronically sleep deprived. Sleep deprivation is associated with an increase in food consumption and appetite. However, the brain regions that are most susceptible to sleep deprivation-induced changes when processing food stimuli are unknown. OBJECTIVE Our objective was to examine brain activation after sleep and sleep deprivation in response to images of food. INTERVENTION Twelve normal-weight male subjects were examined on two sessions in a counterbalanced fashion: after one night of total sleep deprivation and one night of sleep. On the morning after either total sleep deprivation or sleep, neural activation was measured by functional magnetic resonance imaging in a block design alternating between high- and low-calorie food items. Hunger ratings and morning fasting plasma glucose concentrations were assessed before the scan, as were appetite ratings in response to food images after the scan. MAIN OUTCOME MEASURES Compared with sleep, total sleep deprivation was associated with an increased activation in the right anterior cingulate cortex in response to food images, independent of calorie content and prescan hunger ratings. Relative to the postsleep condition, in the total sleep deprivation condition, the activation in the anterior cingulate cortex evoked by foods correlated positively with postscan subjective appetite ratings. Self-reported hunger after the nocturnal vigil was enhanced, but importantly, no change in fasting plasma glucose concentration was found. CONCLUSIONS These results provide evidence that acute sleep loss enhances hedonic stimulus processing in the brain underlying the drive to consume food, independent of plasma glucose levels. These findings highlight a potentially important mechanism contributing to the growing levels of obesity in Western society.


Genomics | 2012

Genome wide analysis reveals association of a FTO gene variant with epigenetic changes

Markus Sällman Almén; Josefin A. Jacobsson; George Moschonis; Christian Benedict; George P. Chrousos; Robert Fredriksson; Helgi B. Schiöth

Variants of the FTO gene show strong association with obesity, but the mechanisms behind this association remain unclear. We determined the genome wide DNA methylation profile in blood from 47 female preadolescents. We identified sites associated with the genes KARS, TERF2IP, DEXI, MSI1, STON1 and BCAS3 that had a significant differential methylation level in the carriers of the FTO risk allele (rs9939609). In addition, we identified 20 differentially methylated sites associated with obesity. Our findings suggest that the effect of the FTO obesity risk allele may be mediated through epigenetic changes. Further, these sites might prove to be valuable biomarkers for the understanding of obesity and its comorbidites.


Science | 2016

A beak size locus in Darwin's finches facilitated character displacement during a drought.

Sangeet Lamichhaney; Fan Han; Jonas Berglund; Chao Wang; Markus Sällman Almén; Matthew T. Webster; B. Rosemary Grant; Peter R. Grant; Leif Andersson

Linked loci and Galapagos finch size Observations of parallel evolution in the finches of the Galapagos, including body and beak size, contributed to Darwins theories. Lamichhaney et al. carried out whole-genome sequencing of 60 Darwins finches. These included small, medium, and large ground finches as well as small, medium, and large tree finches. A genomic region containing the HMGA2 gene correlated strongly with beak size across different species. This locus appears to have played a role in beak diversification throughout the radiation of Darwins finches. Science, this issue p. 470 A genome-wide analysis in finches identifies loci associated with parallel size variation in the Galápagos. Ecological character displacement is a process of morphological divergence that reduces competition for limited resources. We used genomic analysis to investigate the genetic basis of a documented character displacement event in Darwin’s finches on Daphne Major in the Galápagos Islands: The medium ground finch diverged from its competitor, the large ground finch, during a severe drought. We discovered a genomic region containing the HMGA2 gene that varies systematically among Darwin’s finch species with different beak sizes. Two haplotypes that diverged early in the radiation were involved in the character displacement event: Genotypes associated with large beak size were at a strong selective disadvantage in medium ground finches (selection coefficient s = 0.59). Thus, a major locus has apparently facilitated a rapid ecological diversification in the adaptive radiation of Darwin’s finches.


BMC Medical Genetics | 2010

The obesity gene, TMEM18, is of ancient origin, found in majority of neuronal cells in all major brain regions and associated with obesity in severely obese children

Markus Sällman Almén; Josefin A. Jacobsson; Jafar H. A. Shaik; Pawel K. Olszewski; Jonathan Cedernaes; Johan Alsiö; Smitha Sreedharan; Allen S. Levine; Robert Fredriksson; Claude Marcus; Helgi B. Schiöth

BackgroundTMEM18 is a hypothalamic gene that has recently been linked to obesity and BMI in genome wide association studies. However, the functional properties of TMEM18 are obscure.MethodsThe evolutionary history of TMEM18 was inferred using phylogenetic and bioinformatic methods. The genes expression profile was investigated with real-time PCR in a panel of rat and mouse tissues and with immunohistochemistry in the mouse brain. Also, gene expression changes were analyzed in three feeding-related mouse models: food deprivation, reward and diet-induced increase in body weight. Finally, we genotyped 502 severely obese and 527 healthy Swedish children for two SNPs near TMEM18 (rs6548238 and rs756131).ResultsTMEM18 was found to be remarkably conserved and present in species that diverged from the human lineage over 1500 million years ago. The TMEM18 gene was widely expressed and detected in the majority of cells in all major brain regions, but was more abundant in neurons than other cell types. We found no significant changes in the hypothalamic and brainstem expression in the feeding-related mouse models. There was a strong association for two SNPs (rs6548238 and rs756131) of the TMEM18 locus with an increased risk for obesity (p = 0.001 and p = 0.002).ConclusionWe conclude that TMEM18 is involved in both adult and childhood obesity. It is one of the most conserved human obesity genes and it is found in the majority of all brain sites, including the hypothalamus and the brain stem, but it is not regulated in these regions in classical energy homeostatic models.


Gene | 2014

Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity.

Markus Sällman Almén; Emil K. Nilsson; Josefin A. Jacobsson; Ineta Kalnina; Janis Klovins; Robert Fredriksson; Helgi B. Schiöth

The combination of the obesity epidemic and an aging population presents growing challenges for the healthcare system. Obesity and aging are major risk factors for a diverse number of diseases and it is of importance to understand their interaction and the underlying molecular mechanisms. Herein the authors examined the methylation levels of 27578 CpG sites in 46 samples from adult peripheral blood. The effect of obesity and aging was ascertained with general linear models. More than one hundred probes were correlated to aging, nine of which belonged to the KEGG group map04080. Additionally, 10 CpG sites had diverse methylation profiles in obese and lean individuals, one of which was the telomerase catalytic subunit (TERT). In eight of ten cases the methylation change was reverted between obese and lean individuals. One region proved to be differentially methylated with obesity (LINC00304) independent of age. This study provides evidence that obesity influences age driven epigenetic changes, which provides a molecular link between aging and obesity. This link and the identified markers may prove to be valuable biomarkers for the understanding of the molecular basis of aging, obesity and associated diseases.


PLOS Genetics | 2015

The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon(Salmo salar L.) Males

Fernando Ayllon; Erik Kjærner-Semb; Tomasz Furmanek; Vidar Wennevik; Monica Favnebøe Solberg; Geir Dahle; Geir Lasse Taranger; Kevin A. Glover; Markus Sällman Almén; Carl Johan Rubin; Rolf B. Edvardsen; Anna Wargelius

Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1–5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33–36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.


PLOS ONE | 2012

The Dispanins: A Novel Gene Family of Ancient Origin That Contains 14 Human Members

Markus Sällman Almén; Nathalie Bringeland; Robert Fredriksson; Helgi B. Schiöth

The Interferon induced transmembrane proteins (IFITM) are a family of transmembrane proteins that is known to inhibit cell invasion of viruses such as HIV-1 and influenza. We show that the IFITM genes are a subfamily in a larger family of transmembrane (TM) proteins that we call Dispanins, which refers to a common 2TM structure. We mined the Dispanins in 36 eukaryotic species, covering all major eukaryotic groups, and investigated their evolutionary history using Bayesian and maximum likelihood approaches to infer a phylogenetic tree. We identified ten human genes that together with the known IFITM genes form the Dispanin family. We show that the Dispanins first emerged in eukaryotes in a common ancestor of choanoflagellates and metazoa, and that the family later expanded in vertebrates where it forms four subfamilies (A–D). Interestingly, we also find that the family is found in several different phyla of bacteria and propose that it was horizontally transferred to eukaryotes from bacteria in the common ancestor of choanoflagellates and metazoa. The bacterial and eukaryotic sequences have a considerably conserved protein structure. In conclusion, we introduce a novel family, the Dispanins, together with a nomenclature based on the evolutionary origin.


Genome Medicine | 2015

Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers

Sarah Voisin; Markus Sällman Almén; Galina Y. Zheleznyakova; Lina Lundberg; Sanaz Zarei; Sandra Castillo; Fia Ence Eriksson; Emil K. Nilsson; Matthias Blüher; Yvonne Böttcher; Peter Kovacs; Janis Klovins; Mathias Rask-Andersen; Helgi B. Schiöth

BackgroundThe mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the genome as having important roles.MethodsWe genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four brain regions, n = 121–133) and an additional dataset in subcutaneous and visceral fat (n = 149).ResultsWe found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1, SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts.ConclusionsOur results strongly suggest that many obesity-associated SNPs are associated with proximal gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way to understand the molecular basis of genetic variants associated with human diseases and traits.

Collaboration


Dive into the Markus Sällman Almén's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Fredriksson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge