Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marla Pyle is active.

Publication


Featured researches published by Marla Pyle.


BMC Cancer | 2010

A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study

Sivasai Balivada; Raja Shekar Rachakatla; Hongwang Wang; Thilani N. Samarakoon; Raj Kumar Dani; Marla Pyle; Franklin Orban Kroh; Brandon Walker; Xiaoxuan Leaym; Olga Koper; Masaaki Tamura; Viktor Chikan; Stefan H. Bossmann; Deryl L. Troyer

BackgroundThere is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy.MethodsThe influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands.ResultsThe magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. We also observed a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure 24 hrs after the MNPs injection.ConclusionsThese results indicate that intratumoral administration of surface modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, we have found that after intravenous administration of micromolar concentrations, these MNPs are capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. This is a clear improvement to state of the art.


Cancer Letters | 2009

Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo.

Rie Ayuzawa; Chiyo Doi; Raja Shekar Rachakatla; Marla Pyle; Dharmendra Kumar Maurya; Deryl L. Troyer; Masaaki Tamura

The effect of un-engineered (naïve) human umbilical cord matrix stem cells (hUCMSC) on the metastatic growth of MDA 231 xenografts in SCID mouse lung was examined. Three weekly IV injections of 5x10(5) hUCMSC significantly attenuated MDA 231 tumor growth as compared to the saline-injected control. IV injected hUCMSC were detected only within tumors or in close proximity to the tumors. This in vivo result was corroborated by multiple in vitro studies such as colony assay in soft agar and [(3)H]-thymidine uptake. These results suggest that naïve hUCMSC may be a useful tool for cancer cytotherapy.


Cancer Research | 2009

Rat Umbilical Cord Stem Cells Completely Abolish Rat Mammary Carcinomas with No Evidence of Metastasis or Recurrence 100 Days Post–Tumor Cell Inoculation

Chanran K. Ganta; Doi Chiyo; Rie Ayuzawa; Rajashekar Rachakatla; Marla Pyle; Gordon A. Andrews; Mark L. Weiss; Masaaki Tamura; Deryl L. Troyer

Genetically engineered stem cells efficiently deliver therapeutic proteins to cancer and other sites of inflammation. However, a major advantage would be realized if tumor-trafficking stem cells that have not been genetically modified exhibit an inherent antitumor effect, thus circumventing the necessity of the expression of exogenous genes by the cells. We transplanted Fisher 344 rat-derived mammary adenocarcinoma cells (Mat B III) orthotopically into syngeneic F344 rats with an intact immune system. Rat umbilical cord matrix stem (rUCMS) cells derived from Whartons jelly were then administered intratumoral (i.t) or i.v. 4 days later. The tumor attenuation effect was significantly evident starting from day 14 in i.v. and i.t. rUCMS cell-transplanted rats compared with sham-transplanted rats. In addition, unmodified rUCMS cell-transplanted rats showed complete regression of tumors to undetectable levels by 34 to 38 days with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Dye-loaded rUCMS cells were identified within tumors only 4 days after their i.v. transplantation. In vitro colony assays with rUCMS cells as feeder layers markedly reduced Mat B III colony size and number. Growth attenuation of Mat B III cells exposed to either rUCMS cells directly or to the conditioned medium derived from rUCMS cells was associated with apoptosis indicators, including increased activated caspase-3. In addition, rUCMS cells cocultured with Mat B III cells had a dose-dependent antiproliferative effect on Mat B III cells. These findings suggest that unmodified human UCMS cells could be used for targeted cytotherapy for breast cancer.


International Journal of Nanomedicine | 2012

Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model

Matthew T. Basel; Sivasai Balivada; Hongwang Wang; Tej B. Shrestha; Gwi Moon Seo; Marla Pyle; Gayani Abayaweera; Raj Kumar Dani; Olga Koper; Masaaki Tamura; Viktor Chikan; Stefan H. Bossmann; Deryl L. Troyer

Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.


ACS Nano | 2010

Attenuation of Mouse Melanoma by A/C Magnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells

Raja Shekar Rachakatla; Sivasai Balivada; Gwi-Moon Seo; Carl Myers; Hongwang Wang; Thilani N. Samarakoon; Raj Kumar Dani; Marla Pyle; Franklin Orban Kroh; Brandon Walker; Xiaoxuan Leaym; Olga Koper; Viktor Chikan; Stefan H. Bossmann; Masaaki Tamura; Deryl L. Troyer

Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma. NPCs were efficiently loaded with core/shell Fe/Fe(3)O(4) MNPs with minimal cytotoxicity; the MNPs accumulated as aggregates in the cytosol. The NPCs loaded with MNPs could travel to subcutaneous melanomas, and after A/C (alternating current) magnetic field (AMF) exposure, the targeted delivery of MNPs by the cells resulted in a measurable regression of the tumors. The tumor attenuation was significant (p < 0.05) a short time (24 h) after the last of three AMF exposures.


Cancer Investigation | 2008

Combination Treatment of Human Umbilical Cord Matrix Stem Cell-Based Interferon-Beta Gene Therapy and 5-Fluorouracil Significantly Reduces Growth of Metastatic Human Breast Cancer in SCID Mouse Lungs

Raja Shekar Rachakatla; Marla Pyle; Rie Ayuzawa; Sarah M. Edwards; Frank C. Marini; Mark L. Weiss; Masaaki Tamura; Deryl L. Troyer

Umbilical cord matrix stem (UCMS) cells that were engineered to express interferon-beta (IFN-β) were transplanted weekly for three weeks into MDA 231 breast cancer xenografts bearing SCID mice in combination with 5-fluorouracil (5-FU). The UCMS cells were found within lung tumors but not in other tissues. Although both treatments significantly reduced MDA 231 tumor area in the SCID mouse lungs, the combined treatment resulted in a greater reduction in tumor area than by either treatment used alone. These results indicate that a combination treatment of UCMS-IFN-β cells and 5-FU is a potentially effective therapeutic procedure for breast cancer.


Lung Cancer | 2010

Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice

Takaya Matsuzuka; Raja Shekar Rachakatla; Chiyo Doi; Dharmendra Kumar Maurya; Naomi Ohta; Atsushi Kawabata; Marla Pyle; Lara Pickel; Jennifer Reischman; Frank C. Marini; Deryl L. Troyer; Masaaki Tamura

Mesenchymal stem cells derived from the human umbilical cord matrix (hUCMSCs) have great potential for therapeutic use for multiple diseases. The strategy that uses therapeutic gene-transfected hUCMSCs as cellular vehicles for targeted biologic agent delivery has solved the problem of short half-life or excessive toxicity of biological agent(s) in vivo. Interferon-beta (IFN-beta) has demonstrated a potent antitumor effect on many types of cancer cell lines in vivo. The aim of this study was to determine the anti-cancer effect of IFN-beta gene-transfected hUCMSCs (IFN-beta-hUCMSCs) on cells derived from bronchioloalveolar carcinoma, a subset of lung adenocarcinoma that is difficult to treat. The co-culture of a small number of IFN-beta-hUCMSCs with the human bronchioloalveolar carcinoma cell lines H358 or SW1573 significantly inhibited growth of both types of carcinoma cell lines. The culture medium conditioned by these cells also significantly attenuated the growth of both carcinoma cells, but this attenuation was abolished by adding anti-IFN-beta antibody. Finally, systemic administration of IFN-beta-hUCMSCs through the tail vein markedly attenuated growth of orthotopic H358 bronchioloalveolar carcinoma xenografts in SCID mice by increasing apoptosis. These results clearly indicate that IFN-beta-hUCMSCs caused cell death of bronchioloalveolar carcinoma cells through IFN-beta production, thereby attenuating tumor growth in vivo. These results indicate that IFN-beta-hUCMSCs are a powerful anti-cancer cytotherapeutic tool for bronchioloalveolar carcinoma.


PLOS ONE | 2015

Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes

Naomi Ohta; Susumu Ishiguro; Atsushi Kawabata; Deepthi Uppalapati; Marla Pyle; Deryl L. Troyer; Supriyo De; Yonqing Zhang; Kevin G. Becker; Masaaki Tamura

Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species’ breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.


Stem Cell Research & Therapy | 2012

Interleukin-1β and transforming growth factor-β cooperate to induce neurosphere formation and increase tumorigenicity of adherent LN-229 glioma cells.

Lei Wang; Ziyan Liu; Sivasai Balivada; Tej B. Shrestha; Stefan H. Bossmann; Marla Pyle; Loretta Pappan; Jishu N. Shi; Deryl L. Troyer

IntroductionGlioma stem cells (GSCs) have the property of self-renewal and appear to be a driving force for the initiation and recurrence of gliomas. We recently found that the human tumorigenic LN-229 glioma cell line failed to form neurospheres in serum-free conditions and generated mostly small tumors in vivo, suggesting that either LN-229 GSCs are not active in these conditions or GSCs are absent in the LN-229 cell line.MethodsUsing self-renewal assay, soft-agar colony assay, cell proliferation assay, invasion assay, real time PCR analysis, ELISA and in vivo tumorigenic assay, we investigated the effects of interleukin (IL)-1β and transforming growth factor (TGF)-β on the development of GSCs from LN-229 cells.ResultsHere, we demonstrate that the combination of IL-1β and TGF-β can induce LN-229 cells to form neurospheres in serum-free medium. IL-1β/TGF-β-induced neurospheres display up-regulated expression of stemness factor genes (nestin, Bmi-1, Notch-2 and LIF), and increased invasiveness, drug resistance and tumor growth in vivo: hallmarks of GSCs. These results indicate that IL-1β and TGF-β cooperate to induce a GSC phenotype in the LN-229 cell line. Induction of nestin, LIF and Notch-2 by IL-1β/TGF-β can be reverted after cytokine withdrawal. Remarkably, however, up-regulated Bmi-1 levels remained unchanged after cytokine withdrawal; and the cytokine-withdrawn cells maintained strong clonogenicity, suggesting that Bmi-1 may play a crucial role in tumorigenesis.ConclusionsOur finding indicates that glioma cells without self-renewal capability in standard conditions could also contribute to glioma malignancy when cytokines, such as IL-1β and TGF-β, are present in the tumor environment. Targeting GSC-promoting cytokines that are highly expressed in glioblastomas may contribute to the development of more effective glioma therapies.


BMC Cancer | 2010

Therapy with un-engineered naïve rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma

Dharmendra Kumar Maurya; Chiyo Doi; Atsushi Kawabata; Marla Pyle; Clay King; Zhihong Wu; Deryl L. Troyer; Masaaki Tamura

BackgroundLung cancer remains the leading cause of cancer-related mortality despite continuous efforts to find effective treatments. Data from the American Cancer Society indicate that while the overall incidence of lung cancer is declining, it continues to rise in women. Stem cell-based therapy has been an emerging strategy to treat various diseases. The purpose of this paper is to determine the efficacy of an intrinsic anti-cancer effect of rat umbilical cord matrix stem cells (UCMSCs) on lung cancer.MethodsA mouse syngeneic lung carcinoma model was used to test the basic ability of UCMSCs to control the growth of lung cancer. Lung tumors were experimentally induced by tail vein administration of Lewis lung carcinoma (LLC) cells derived from the lung of C57BL/6 mouse. Rat UCMSCs were then administered intratracheally five days later or intravenously on days 5 and 7. The tumor burdens were determined by measuring lung weight three weeks after the treatment.ResultsCo-culture of rat UCMSCs with LLC significantly attenuated the proliferation of LLC cells as monitored by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), a tetrazole cell proliferation assay, thymidine uptake, and direct cell counts. In vitro colony assays with rat UCMSCs as feeder layers markedly reduced LLC colony size and number. Co-culture of rat UCMSCs with LLCs causes G0/G1 arrest of cancer cells. This is evident in the decrease of cyclin A and CDK2 expression. The in vivo studies showed that rat UCMSC treatment significantly decreased tumor weight and the total tumor mass. Histological study revealed that intratracheally or systemically administered rat UCMSCs homed to tumor areas and survived for at least 3 weeks without any evidence of differentiation or adverse effects.ConclusionsThese results indicate that rat UCMSCs alone remarkably attenuate the growth of lung carcinoma cells in vitro and in a mouse syngeneic lung carcinoma graft model and could be used for targeted cytotherapy for lung cancer.

Collaboration


Dive into the Marla Pyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi Ohta

Kansas State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge