Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi Ohta is active.

Publication


Featured researches published by Naomi Ohta.


Lung Cancer | 2010

Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice

Takaya Matsuzuka; Raja Shekar Rachakatla; Chiyo Doi; Dharmendra Kumar Maurya; Naomi Ohta; Atsushi Kawabata; Marla Pyle; Lara Pickel; Jennifer Reischman; Frank C. Marini; Deryl L. Troyer; Masaaki Tamura

Mesenchymal stem cells derived from the human umbilical cord matrix (hUCMSCs) have great potential for therapeutic use for multiple diseases. The strategy that uses therapeutic gene-transfected hUCMSCs as cellular vehicles for targeted biologic agent delivery has solved the problem of short half-life or excessive toxicity of biological agent(s) in vivo. Interferon-beta (IFN-beta) has demonstrated a potent antitumor effect on many types of cancer cell lines in vivo. The aim of this study was to determine the anti-cancer effect of IFN-beta gene-transfected hUCMSCs (IFN-beta-hUCMSCs) on cells derived from bronchioloalveolar carcinoma, a subset of lung adenocarcinoma that is difficult to treat. The co-culture of a small number of IFN-beta-hUCMSCs with the human bronchioloalveolar carcinoma cell lines H358 or SW1573 significantly inhibited growth of both types of carcinoma cell lines. The culture medium conditioned by these cells also significantly attenuated the growth of both carcinoma cells, but this attenuation was abolished by adding anti-IFN-beta antibody. Finally, systemic administration of IFN-beta-hUCMSCs through the tail vein markedly attenuated growth of orthotopic H358 bronchioloalveolar carcinoma xenografts in SCID mice by increasing apoptosis. These results clearly indicate that IFN-beta-hUCMSCs caused cell death of bronchioloalveolar carcinoma cells through IFN-beta production, thereby attenuating tumor growth in vivo. These results indicate that IFN-beta-hUCMSCs are a powerful anti-cancer cytotherapeutic tool for bronchioloalveolar carcinoma.


BMC Cancer | 2010

Angiotensin II type 2 receptor signaling significantly attenuates growth of murine pancreatic carcinoma grafts in syngeneic mice

Chiyo Doi; Noboru Egashira; Atsushi Kawabata; Dharmendra Kumar Maurya; Naomi Ohta; Deepthi Uppalapati; Rie Ayuzawa; Lara Pickel; Yuka Isayama; Deryl L. Troyer; Susumu Takekoshi; Masaaki Tamura

BackgroundPancreatic cancer is one of the most aggressive human malignancies, with a very poor prognosis. To evaluate the effect of angiotensin II (Ang II) type 2 receptor (AT2) expression in the hosts body on the growth of pancreatic carcinoma, we have investigated the growth of mouse pancreatic ductal carcinoma grafts in syngeneic wild type and AT2 receptor-deficient (AT2-KO) mice.MethodsThe role of AT2 receptor-signaling in stromal cells on the growth of murine pancreatic carcinoma cells (PAN02) was studied using various in vitro and in vivo assays. In vivo cell proliferation, apoptosis, and vasculature in tumors were monitored by Ki-67 immunostaining, TUNEL assay, and von Willebrand factor immunostaining, respectively. In the co-culture study, cell proliferation was measured by MTT cell viability assay. All the data were analyzed using t-test and data were treated as significant when p < 0.05.ResultsOur results show that the growth of subcutaneously transplanted syngeneic xenografts of PAN02 cells, mouse pancreatic ductal carcinoma cells derived from the C57/BL6 strain, was significantly faster in AT2-KO mice compared to control wild type mice. Immunohistochemical analysis of tumor tissue revealed significantly more Ki-67 positive cells in xenografts grown in AT2-KO mice than in wild type mice. The index of apoptosis is slightly higher in wild type mice than in AT2-KO mice as evaluated by TUNEL assay. Tumor vasculature number was significantly higher in AT2-KO mice than in wild type mice. In vitro co-culture studies revealed that the growth of PAN02 cells was significantly decreased when grown with AT2 receptor gene transfected wild type and AT2-KO mouse-derived fibroblasts. Faster tumor growth in AT2-KO mice may be associated with higher VEGF production in stromal cells.ConclusionsThese results suggest that Ang II regulates the growth of pancreatic carcinoma cells through modulating functions of host stromal cells; Moreover, Ang II AT2 receptor signaling is a negative regulator in the growth of pancreatic carcinoma cells. These findings indicate that the AT2 receptor in stromal fibroblasts is a potentially important target for chemotherapy for pancreatic cancer.


Cancer Research | 2012

Intratracheal Administration of a Nanoparticle-Based Therapy with the Angiotensin II Type 2 Receptor Gene Attenuates Lung Cancer Growth

Atsushi Kawabata; Abdulgader Baoum; Naomi Ohta; Stephanie Jacquez; Gwi-Moon Seo; Cory Berkland; Masaaki Tamura

Targeted gene delivery, transfection efficiency, and toxicity concerns remain a challenge for effective gene therapy. In this study, we dimerized the HIV-1 TAT peptide and formulated a nanoparticle vector (dTAT NP) to leverage the efficiency of this cell-penetrating strategy for tumor-targeted gene delivery in the setting of intratracheal administration. Expression efficiency for dTAT NP-encapsulated luciferase or angiotensin II type 2 receptor (AT2R) plasmid DNA (pDNA) was evaluated in Lewis lung carcinoma (LLC) cells cultured in vitro or in vivo in orthotopic tumor grafts in syngeneic mice. In cell culture, dTAT NP was an effective pDNA transfection vector with negligible cytotoxicity. Transfection efficiency was further increased by addition of calcium and glucose to dTAT/pDNA NP. In orthotopic tumor grafts, immunohistochemical analysis confirmed that dTAT NP successfully delivered pDNA to the tumor, where it was expressed primarily in tumor cells along with the bronchial epithelium. Notably, gene expression in tumor tissues persisted at least 14 days after intratracheal administration. Moreover, bolus administration of dTAT NP-encapsulated AT2R or TNF-related apoptosis-inducing ligand (TRAIL) pDNA markedly attenuated tumor growth. Taken together, our findings offer a preclinical proof-of-concept for a novel gene delivery system that offers an effective intratracheal strategy for administering lung cancer gene therapy.


PLOS ONE | 2015

Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes

Naomi Ohta; Susumu Ishiguro; Atsushi Kawabata; Deepthi Uppalapati; Marla Pyle; Deryl L. Troyer; Supriyo De; Yonqing Zhang; Kevin G. Becker; Masaaki Tamura

Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species’ breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.


The Open Tissue Engineering and Regenerative Medicine Journal | 2011

Wharton's Jelly Stem Cells as Agents for Cancer Therapy

Masaaki Tamura; Atsushi Kawabata; Naomi Ohta; Lakshmi Uppalapati; Kevin G. Becker; Deryl L. Troyer

Stem cell based therapy has significant potential to treat various diseases including primary and metastatic cancers. The umbilical cord matrix stem cells (UCMSC) derived from human umbilical cord Whartons jelly (also termed WJMSC) have been shown to exhibit low immunogenicity, which potentially negates immune consequences after cytotherapy. The homing ability of human and rat UCMSC to inflammatory tissues, including cancer tissues, further confers upon these cells the potential for targeted cancer therapy. Our previous studies demonstrated that un-engineered human and rat UCMSC significantly attenuated the growth of multiple cancer cell lines in vivo and in vitro through multiple mechanisms. We have also demonstrated that these cells can be engineered to express cytotoxic cytokines before being delivered to the tumor and can be preloaded with nanoparticle payloads and attenuate tumors after homing to them. In this review, intrinsic stem cell-dependent regulation of cancer growth, potential mechanisms involved in this unique biological function, delivery of exogenous anti-cancer agents, and the potential for clinical applications will be discussed.


ACS Chemical Biology | 2014

Electronic sculpting of ligand-GPCR subtype selectivity: the case of angiotensin II.

Francesca Magnani; Charalampos Pappas; Tim Crook; Vassiliki Magafa; Paul Cordopatis; Susumu Ishiguro; Naomi Ohta; Jana Selent; Sanja Bosnyak; Emma S. Jones; Ioannis P. Gerothanassis; Masaaki Tamura; Robert E. Widdop; Andreas G. Tzakos

GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (Ki = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range.


Molecular Pharmaceutics | 2011

Identification and Characterization of Unique Tumoricidal Genes in Rat Umbilical Cord Matrix Stem Cells

Deepthi Uppalapati; Naomi Ohta; Yongqing Zhang; Atsushi Kawabata; Marla Pyle; Kevin G. Becker; Deryl L. Troyer; Masaaki Tamura

Rat umbilical cord matrix stem cells (UCMSC) have been shown to exhibit a remarkable ability to control rat mammary adenocarcinoma (Mat B III) cell proliferation both in vivo and in vitro. To study the underlying mechanisms and genes involved in Mat B III growth attenuation, total RNA was extracted from the naive rat UCMSC alone and those cocultured with Mat B III in Transwell culture dishes. Gene expression profiles of naive rat UCMSC alone and those cocultured with Mat B III cells were investigated by microarray analysis using an Illumina RatRef-12 Expression BeadChip. The comparison of gene expression profiles between untreated and cocultured rat UCMSC identified five upregulated candidate genes (follistatin (FST), sulfatase1 (SULF-1), glucose phosphate isomerase (GPI), HtrA serine peptidase (HTRA1), and adipocyte differentiation-related protein (ADRP)) and two downregulated candidate genes (transforming growth factor, beta-induced, 68 kDa (TGFβI) and podoplanin (PDPN)) based upon the following screening criteria: (1) expression of the candidate genes should show at least a 1.5-fold change in rat UCMSC cocultured with Mat B III cells; (2) candidate genes encode secretory proteins; and (3) they encode cell growth-related proteins. Following confirmation of gene expression by real-time PCR, ADRP, SULF-1 and GPI were selected for further analysis. Addition of specific neutralizing antibodies against these three gene products or addition of gene-specific siRNAs individually in cocultures of 1:20 rat UCMSC:Mat B III cells significantly increased cell proliferation, implying that these gene products are produced under the cocultured condition and functionally attenuate cell growth. Immunoprecipitation followed by Western blot analysis demonstrated that these proteins are indeed secreted into the culture medium. Individual overexpression of these three genes in rat UCMSC significantly enhanced UCMSC-dependent inhibition of cell proliferation in coculture. These results suggest that ADRP, SULF-1 and GPI act as tumor suppressor genes, and these genes might be involved in rat UCMSC-dependent growth attenuation of rat mammary tumors.


Cytotherapy | 2013

Naive rat umbilical cord matrix stem cells significantly attenuate mammary tumor growth through modulation of endogenous immune responses.

Atsushi Kawabata; Naomi Ohta; Garret Seiler; Marla Pyle; Susumu Ishiguro; Yongqing Zhang; Kevin G. Becker; Deryl L. Troyer; Masaaki Tamura

BACKGROUND AIMS Un-engineered human and rat umbilical cord matrix stem cells (UCMSCs) attenuate growth of several types of tumors in mice and rats. However, the mechanism by which UCMSCs attenuate tumor growth has not been studied rigorously. METHODS The possible mechanisms of tumor growth attenuation by rat UCMSCs were studied using orthotopic Mat B III rat mammary tumor grafts in female F344 rats. Tumor-infiltrating leukocytes were identified and quantified by immunohistochemistry analysis. Potential cytokines involved in lymphocyte infiltration in the tumors were determined by microarray and Western blot analysis. The Boyden chamber migration assay was performed for the functional analysis of identified cytokines. RESULTS Rat UCMSCs markedly attenuated tumor growth; this attenuation was accompanied by considerable lymphocyte infiltration. Immunohistochemistry analysis revealed that most infiltrating lymphocytes in the rat UCMSC-treated tumors were CD3(+) T cells. In addition, treatment with rat UCMSCs significantly increased infiltration of CD8(+) and CD4(+) T cells and natural killer (NK) cells throughout tumor tissue. CD68(+) monocytes/macrophages and Foxp3(+) regulatory T cells were scarcely observed, only in the tumors of the phosphate-buffered saline control group. Microarray analysis of rat UCMSCs demonstrated that monocyte chemotactic protein-1 is involved in rat UCMSC-induced lymphocyte infiltration in the tumor tissues. CONCLUSIONS These results suggest that naïve rat UCMSCs attenuated mammary tumor growth at least in part by enhancing host anti-tumor immune responses. Naïve UCMSCs can be used as powerful therapeutic cells for breast cancer treatment, and monocyte chemotactic protein-1 may be a key molecule to enhance the effect of UCMSCs at the tumor site.


Biochemical and Biophysical Research Communications | 2018

Co-treatment with a C1B5 peptide of protein kinase Cγ and a low dose of gemcitabine strongly attenuated pancreatic cancer growth in mice through T cell activation

Susumu Ishiguro; Atsushi Kawabata; Alejandro Zulbaran-Rojas; Kelsey Monson; Deepthi Uppalapati; Naomi Ohta; Makoto Inui; Charalampos Pappas; Andreas G. Tzakos; Masaaki Tamura

Although gemcitabine is an effective chemotherapeutic for pancreatic cancer, severe side effects often accompany its use. Since we have discovered that locally administered C1B domain peptides effectively control tumor growth without any side effects, the efficacy of co-treatment with this peptide and a low dose of gemcitabine on the growth of pancreatic cancer was examined. Two- and three-dimensional cell culture studies clarified that a co-treatment with C1B5 peptide and gemcitabine significantly attenuated growth of PAN02 mouse and PANC-1 human pancreatic cancer cells in 2D and 3D cultures. Although treatment with the low dose of gemcitabine alone (76%) or the C1B5 peptide alone (39%) inhibited tumor growth moderately, a co-treatment with C1B5 peptide and a low dose of gemcitabine markedly inhibited the growth of PAN02 autografts in the mouse peritoneal cavity (94% inhibition) without any noticeable adverse effect. The number of peritoneal cavity-infiltrating neutrophils and granzyme B+ lymphocytes was significantly higher in the co-treatment group than in the control group. A significant increase of granzyme B mRNA expression was also detected in human T cells by the co-treatment. Taken together, the current study suggests that C1B5 peptide offers a remarkably effective combination treatment strategy to reduce side effects associated with gemcitabine, without losing its tumoricidal effect.


Cancer Research | 2017

Abstract 1107: Co-treatment with a C1B5 domain peptide of protein kinase Cγ and a low dose of gemcitabine effectively inhibited pancreatic cancer growth in mouse peritoneal cavity

Alejandro Zulbaran; Kelsey Monson; Susumu Ishiguro; Atsushi Kawabata; Deepthi Uppalapati; Naomi Ohta; Masaaki Tamura

Although the gemcitabine is an effective chemotherapeutic agent for pancreatic cancer, unacceptable side effects often accompany. Since we have previously discovered that PKCγ C1B domain peptides effectively control tumor growth without any side effect (Kawabata et. al, Cancer Biol Ther, 2012), we sought to examine the efficacy of co-treatment with this peptide and a low dose of gemcitabine on the growth of pancreatic cancer. Although individual and co-treatment with C1B5 peptide (1µM) and gemcitabine (20 nM) weakly inhibited growth of PAN02 murine pancreatic acinar cell carcinoma in 2D culture, either treatment effectively attenuated spheroid growth on PAN02 cells in 3D culture with 48.2% and 35.8% inhibition, respectively. Combination treatment with the C1B5 peptide and gemcitabine further attenuated the growth of PAN02 cells (69.5% inhibition). In mice bearing peritoneal allograft tumors of PAN02 cells (2.5 x 105 cells/mouse), combination treatment with C1B5 peptide at 20 mg/kg (every other day) and gemcitabine 15 mg/kg (every three days) markedly inhibited tumor growth of PAN02 allografts (94% inhibition) more than individual treatment with gemcitabine (76% inhibition) or C1B5 peptide (39% inhibition). The tumor growth inhibition by the combination treatment was similar to the higher dose (50 mg/kg) of gemcitabine alone treatment. Peritoneal cavity infiltrated neutrophils and granzime B+ lymphocyte numbers were significantly higher in combination treatment group than in control group. In cell culture study, the treatment with C1B5 peptide alone (1µM) significantly increased INF-γ, IL-2, and TNF-α mRNA levels, suggesting that C1B5 peptide directly stimulated Jurkat cell activation. These studies suggest that stimulation of leucocyte migration toward cancer tissues and activation of cytotoxic T cells may play important roles in tumor growth attenuation by the combination treatment of C1B5 peptide and gemcitabine. Taken together, the current study suggests that C1B5 peptide offers an effective combination treatment strategy to reduce side effects associated with gemcitabine without losing tumoricidal effect of this agent. This work is supported in part by Kansas State University Johnson Cancer Research Center, NIH grants P20 GM103418, and Kansas State Bioscience Authority Collaborative Cancer Research grant. Citation Format: Alejandro Zulbaran, Kelsey Monson, Susumu Ishiguro, Atsushi Kawabata, Deepthi Uppalapati, Naomi Ohta, Masaaki Tamura. Co-treatment with a C1B5 domain peptide of protein kinase Cγ and a low dose of gemcitabine effectively inhibited pancreatic cancer growth in mouse peritoneal cavity [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1107. doi:10.1158/1538-7445.AM2017-1107

Collaboration


Dive into the Naomi Ohta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marla Pyle

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin G. Becker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yongqing Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chiyo Doi

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge