Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marlena C. Kruger is active.

Publication


Featured researches published by Marlena C. Kruger.


Aging Clinical and Experimental Research | 1998

Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis

Marlena C. Kruger; H. Coetzer; R. de Winter; G. Gericke; D.H. van Papendorp

Recent animal work suggests that gamma-linolenic acid (GLA) and eicosapentaenoic acid (EPA) enhance calcium absorption, reduce excretion and increase calcium deposition in bone. A pilot study was set up to test the interactions between calcium and GLA+EPA in humans. Sixty-five women (mean age 79.5), taking a background diet low in calcium, were randomly assigned to GLA+EPA or coconut oil placebo capsules; in addition, all received 600 mg/day calcium as the carbonate. Markers of bone formation/degradation and bone mineral density (BMD) were measured at baseline, 6, 12 and 18 months. Twenty-one patients were continued on treatment for a second period of 18 months, after which BMD (36 months) was measured. At 18 months, osteocalcin and deoxypyridinoline levels fell significantly in both groups, indicating a decrease in bone turnover, whereas bone specific alkaline phosphatase rose indicating beneficial effects of calcium given to all the patients. Lumbar and femoral BMD, in contrast, showed different effects in the two groups. Over the first 18 months, lumbar spine density remained the same in the treatment group, but decreased 3.2% in the placebo group. Femoral bone density increased 1.3% in the treatment group, but decreased 2.1% in the placebo group. During the second period of 18 months with all patients now on active treatment, lumbar spine density increased 3.1% in patients who remained on active treatment, and 2.3% in patients who switched from placebo to active treatment; femoral BMD in the latter group showed an increase of 4.7%. This pilot controlled study suggests that GLA and EPA have beneficial effects on bone in this group of elderly patients, and that they are safe to administer for prolonged periods of time.


Progress in Lipid Research | 1997

Calcium metabolism, osteoporsis and essential fatty acids: A review

Marlena C. Kruger; David F. Horrobin

Essential fatty acid (EFA)-deficient animals develop severe osteoporosis coupled with increased renal and arterial calcification. This picture is similar to that seen in osteoporosis in the elderly, where the loss of bone calcium is associated with ectopic calcification of other tissues, particularly the arteries and the kidneys. Recent mortality studies indicate that the ectopic calcification may be considerably more dangerous than the osteoporosis itself, since the great majority of excess deaths in women with osteoporosis are vascular and unrelated to fractures or other bone abnormalities. EFAs have now been shown to increase calcium absorption from the gut, in part by enhancing the effects of vitamin D, to reduce urinary excretion of calcium, to increase calcium deposition in bone and improve bone strength and to enhance the synthesis of bone collagen. These desirable actions are associated with reduced ectopic calcification. The interaction between EFA and calcium metabolism deserves further investigation since it may offer novel approaches to osteoporosis and also to the ectopic calcification associated with osteoporosis which seems to be responsible for so many deaths.


Progress in Lipid Research | 2010

Long chain polyunsaturated fatty acids : selected mechanisms of action on bone

Marlena C. Kruger; Magdalena Coetzee; Marianne Haag; Hope A. Weiler

Evidence presented over the past 20 years has shown that long-chain polyunsaturated fatty acids (LCPUFAs), especially the n-3 fatty acids such as eicospentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health. Some studies in humans indicate that LCPUFAs can increase bone formation, affect peak bone mass in adolescents and reduce bone loss as measured using bone mineral densitometry. The cellular mechanisms of action of the LCPUFAs, however, are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signalling pathways, cytokines and growth factors. LCPUFAs affect receptor activator of nuclear factor κβ (RANK), a receptor found on the osteoclast, the cell causing bone resorption, which controls osteoclast formation. Lipoxygenase (LOX) generated lipid mediators (resolvins, lipoxins, protectins and docosanoids) have both anti-inflammatory and pro-resolving activities. Both resolvins and lipoxins inhibit inflammation-induced bone resorption. Arachidonic acid significantly upregulates inducible NO synthase (iNOS) mRNA expression in human osteoblast-like cells, thereby possibly enhancing osteoclastic activity. The protective effect of EPA on osteoblastogenesis could be mediated by the biphasic cross-talk between PGE(2) and NO production involving COX-2 and iNOS pathways. Other mediators of osteoblast maturation include PPARα ligands such as linoleic acid and possibly DHA in association with bone morphogenic proteins. Since DHA is a weaker ligand for PPARγ, more uncommitted mesenchymal stem cells are thought to differentiate into osteoblasts rather than adipocytes. This review addresses selected cellular mechanisms that may explain the beneficial effects of the LCPUFAs on bone.


Bone | 1995

Supplemented Gamma-Linolenic Acid and Eicosapentaenoic Acid Influence Bone Status in Young Male Rats: Effects on Free Urinary Collagen Crosslinks, Total Urinary Hydroxyproline, and Bone Calcium Content

N. Claassen; Hc Potgieter; M. Seppa; W.J.H. Vermaak; H. Coetzer; D.H. van Papendorp; Marlena C. Kruger

The effect of different ratios of the prostaglandin precursors gamma-linolenic (GLA) and eicosapentaenoic (EPA) acids on bone status in growing rats measured as a function of free urinary pyridinium crosslinks and hydroxyproline levels was investigated. Male Sprague-Dawley rats were weaned onto an essential fatty acid deficient diet and from their fifth week, different groups of rats received a balanced, semisynthetic diet, supplemented with different ratios of GLA:EPA supplied as a mixture of evening primrose oil (EPO) and fish oil (FO). Controls were supplemented with linoleic (LA; sunflower oil) and alpha-linolenic (ALA; linseed oil) acids (3:1) or a commercially available rat chow. Animals were terminated at 84 days and femur length, ash weight, calcium content, free urinary pyridinium crosslinks (Pyd and Dpyd), total hydroxyproline (Hyp), and creatinine levels measured. Free urinary Pyd and Dpyd are good indicators of bone status and they correlated well with Hyp. Pyd and Dpyd excretion were significantly decreased in the higher GLA:EPA dietary groups and correlated well (r = 0.7) with Hyp levels. Concomitantly, bone calcium content increased significantly in the same dietary groups. These results suggest that diet supplementation with relatively high GLA:EPA ratios are more effective in inhibiting bone resorption than LA:ALA.


Prostaglandins Leukotrienes and Essential Fatty Acids | 1995

The effect of different n-6 n-3 essential fatty acid ratios on calcium balance and bone in rats

N. Claassen; H. Coetzer; C.M.L. Steinmann; Marlena C. Kruger

Prostaglandins (PGs) are known to have various effects on bone metabolism. The supplementation of essential fatty acids (EFAs), the precursors of PGs, leads to increased intestinal calcium absorption and calcium balance. It is, however, not known whether increased calcium absorption and calcium balance will enhance the calcium content in bone. Male Sprague-Dawley rats (n = 40) aged 5-12 weeks were supplemented with EFAs. The main dietary EFAs, linoleic acid (LA) and alpha-linolenic acid (ALA) were administered in a ratio of 3:1 as a control group. The conversion of LA to ALA to the PG precursors is slow, with the first step, delta-6-desaturation being rate limiting. Fatty acids beyond this rate-limiting step, gamma-linolenic acid (GLA, n-6) and eicoapentaenioc acid (EPA, n-3), were administered to different groups in the ratios 3:1, 1:1 and 1:3 to explore the impact of different ratios of n-6 and n-3 EFAs. Intestinal calcium absorption (mg/24 h) increased by 41.5% in the 3:1 supplemented group, compared with the control group. The decrease in urinary calcium (mg/24 h) correlated with the increase in n-3 level. The calcium balance (mg/24 h) and bone calcium (mg/g bone ash) increased significantly in the 3:1 (41.5% and 24.7%) group, compared with the control. The increase in bone calcium might be attributed to an EFA-induced increase in circulating PGs. An increased synthesis of PGs acting on target bone cells, as well as changes in membrane fluidity, may underlie these observations.


Experimental Biology and Medicine | 2007

Long-Chain Polyunsaturated Fatty Acids and the Regulation of Bone Metabolism

Raewyn C. Poulsen; Paul J. Moughan; Marlena C. Kruger

The role of prostaglandin E2 (PGE2) in the regulation of bone remodeling is well established. There is increasing evidence that various long-chain polyunsaturated fatty acids (LCPUFAs), as well as nonprostanoid LCPUFA metabolites, also have critical roles in regulating bone metabolism and may have therapeutic potential in the management of postmenopausal osteoporosis. Although only the 18-carbon precursors for the n-3 and n-6 LCPUFAs are deemed “dietary essential,” the ability of the body to convert these precursor fatty acids into the more highly unsaturated 20- and 22-carbon LCPUFAs decreases with aging, menopause, and various lifestyle factors (e.g., smoking). Increasing dietary LCPUFA intake increases tissue and blood LCPUFA concentrations, as well as the concentrations of their metabolites. Modification of dietary LCPUFA content, particularly increasing the intake of n-3 LCPUFAs, has been shown to minimize the decline in bone mass caused by menopause in women and ovariectomy in animal models. This review summarizes findings from both in vivo and in vitro studies and outlines the effects of LCPUFAs and their metabolites on calcium balance, osteoblastogenesis, osteoclastogenesis, and osteoblast and osteoclast function.


Experimental Biology and Medicine | 2003

The effect of fructooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat

Marlena C. Kruger; Katherine E. Brown; Gabrielle Collett; Lee Layton; Linda M. Schollum

Maximizing peak bone mass during adolescence may be the key to postponing and perhaps preventing bone fractures due to osteoporosis in later life. One mechanism to maximize peak bone mass is to maximize calcium absorption, and it has been suggested that inulin and oligofructose might be one of the ways of doing so. In this study, fructooligosaccharides with various degrees of polymerization have been compared in terms of impact on calcium absorption, bone density, and excretion of collagen cross-links in the young adult male rat. The various oligosaccharides were oligofructose (DP2-8), inulin (DP>23), and a mixture of 92% inulin and 8% short-chain oligofructose (DP2-8). Measuring ex vivo bone mineral density (BMD) and bone mineral content (BMC) showed that BMD was significantly higher in the group fed inulin (DP>23) in both femurs, whereas BMC was significantly higher in the spine. The excretion of fragments of Type 1 collagen decreased in all groups over the 4 weeks of feeding, but the decrease was most significant in the group fed inulin (DP>23). Several hypotheses have been offered to explain the effect of the fructooligosaccharides on calcium absorption and retention. These include the production of organic acids that would acidify the luminal contents and enhance solubility and hence absorption, or possibly a mechanism via calbindinD9k. This study is unique in that it compares the different fructooligosaccharides in the same model, and it clearly shows that the various fructans do not have the same effect. In our model, inulin (DP>23) had the most significant effect on calcium bioavailability.


Nutrition Research | 1995

Biochemical profile of osteoporotic patients on essential fatty acid supplementation

D.H. van Papendorp; H. Coetzer; Marlena C. Kruger

Abstract Osteoporosis is the most frequent metabolic bone disorder in developed communities. No single mechanism can adequately explain the pathophysiology of osteoporosis. Recently new biochemical markers for metabolic bone disease, such as osteocalcin and procollagen have been identified and these parameters have been proven to be indicative of bone turnover. In this study, markers of bone turnover were monitored in 40 osteoporotic patients. Patients were divided into four groups to receive one of the following dietary supplements: evening primrose oil; fish oil; a mixture of evening primrose and fish oil or olive oil (placebo), for 16 weeks. Patients supplemented with fish oil showed an increase in serum calcium and an increase in urinary calcium clearance (p


Prostaglandins Leukotrienes and Essential Fatty Acids | 2003

Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption

Marianne Haag; Olga N. Magada; N. Claassen; Linde H Böhmer; Marlena C. Kruger

Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.


American Journal of Hematology | 2008

Identification of inflammatory and proresolving lipid mediators in bone marrow and their lipidomic profiles with ovariectomy and omega-3 intake

Raewyn C. Poulsen; Katherine H. Gotlinger; Charles N. Serhan; Marlena C. Kruger

Newly described lipoxygenase (LOX)‐generated lipid mediators, that is, resolvins and protectins as well as lipoxins, are both anti‐inflammatory and proresolving. We aimed to determine whether these lipid mediators are present in bone marrow and whether their lipidomic profiles are altered following ovariectomy or dietary supplementation with eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) ethyl esters. Female rats were ovariectomised or sham‐operated. Shams and one ovariectomised group received a diet devoid of omega‐3 long‐chain polyunsaturated fatty acids. The remaining ovariectomised rats received either 0.5 g EPA or DHA ethyl ester/kg body weight/day for 4 months. Bone marrow was analyzed using both GC to determine fatty acid composition and mediator lipidomics by LC/MS/MS profiling for the presence of LOX‐pathway lipid mediators derived from arachidonic acid (AA), EPA, and DHA. LOX‐derived products including lipoxins, resolvin D1, resolvin E1, and protectin D1 were identified in bone marrow by the presence of diagnostic ions in their corresponding MS‐MS spectra. The proportion of AA relative to DHA and of AA‐derived relative to DHA‐derived mediators in bone marrow was higher in ovariectomised compared to sham‐operated rats. DHA or EPA ethyl ester supplementation increased the percentage of DHA and EPA in bone marrow and increased the proportion of LOX mediators biosynthesized from DHA or EPA, respectively. Given the potent bioactivities of the lipoxins, resolvins, and protectins, the presence and changes in profile postovariectomy and with EPA and DHA ethyl ester supplementation may be of interest in bone marrow function and as a potential source of these mediators in vivo. Am. J. Hematol., 2008.

Collaboration


Dive into the Marlena C. Kruger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Coetzer

University of Pretoria

View shared research outputs
Top Co-Authors

Avatar

N. Claassen

University of Pretoria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge